Journal of Thermal Analysis and Calorimetry

, Volume 124, Issue 2, pp 1023–1028 | Cite as

Structural and thermal characterization of NixZn1−xAl2O4 synthesized by the polymeric precursor method

  • Renan M. Queiroz
  • Tiago L. Coelho
  • Isabella M. Queiroz
  • Luiza H. O. Pires
  • Ieda M. G. Santos
  • José R. Zamian
  • Geraldo N. da Rocha Filho
  • Carlos E. F. da Costa


Oxides with NixZn1−xAl2O4 spinel structures (x = 0, 0.05, 0.10, 0.15 and 1.0) have been synthesized by a simple polymeric precursor method. The samples were calcined at 600, 800 and 1000 °C for 2 h. The thermal decomposition of materials has been investigated by TG and DTA. X-ray diffractogram showed that the synthesis is efficient to produce spinel structures with no significant interfering phases. Materials characterization also revealed that these oxides had surface areas (BET) in the range of 8–156 m2 g−1. The absorption bands in the infrared spectroscopy (IR) were related to (ZnO4) and [AlO6] stretching vibration, and the UV–Vis spectrograms indicated the presence of Ni2+ in tetrahedral sites. The colorimetric analysis (CIELab) results showed that the color of the pigments is blue and becomes lighter with increasing synthesis temperature. All these structural and thermal properties indicated that the materials have potential applications as pigments, catalysts and so on.


Spinel Pigments Nickel Thermal behavior 



The authors would like to thank FINEP/LAPAC and CNPq for the financial support.


  1. 1.
    Costa G, Ribeiro MJ, Labrincha JA, Dondi M, Matteucci F, Cruciani G. Malayaite ceramic pigments prepared with galvanic sludge. Dyes Pigments. 2008;78:157–64.CrossRefGoogle Scholar
  2. 2.
    Assis RB, Bomio MRD, Nascimento RM, Paskocimas CS, Longo E, Mota FV. Rapid calcination of ferrite Ni0,75Zn0,25Fe2O4 by microwave energy. J Therm Anal Calorim. 2014;118:277–85.CrossRefGoogle Scholar
  3. 3.
    Dohnalová Z, Sulcová P, Trojan M. Effect of Er3+ substitution on the quality of Mg–Fe spinel pigments. Dyes Pigments. 2009;80:22–5.CrossRefGoogle Scholar
  4. 4.
    Gawas SG, Verenkar VMS, Mojumdar SC. Synthesis and characterization of nickel cobalt zinc ferrous hydrazine fumarate. J Therm Anal Calorim. 2015;119:825–30.CrossRefGoogle Scholar
  5. 5.
    Eliziário SA, Andrade JM, Lima SJG, Paskocimas CA, Soledade LEB, Hammer P, Longo E, Souza AG, Santos IMG. Black and green pigments based on chromium–cobalt spinels. Mater Chem Phys. 2011;129:619–24.CrossRefGoogle Scholar
  6. 6.
    Gawas UB, Verenkar VMS, Mojumdar SC. Nano-crystalline Mn0.3Ni0.3Zn0.4Fe2O4 obtained by novel fumarato-hydrazinate precursor method: synthesis, characterization and studies of magnetic and electrical properties. J Thermal Anal Calorim. 2012;108:865–70.CrossRefGoogle Scholar
  7. 7.
    Pawar DK, Pawar SM, Patil PS, Kolekar SS. Synthesis of nanocrystalline nickel-zinc ferrite (Ni0,8Zn0,2Fe2O4) thin films by chemical bath deposition method. J Alloy Compd. 2011;509:3587–91.CrossRefGoogle Scholar
  8. 8.
    Zawadzki M, Wrzyszcz J. Hydrothermal synthesis of nanoporous zinc aluminate with high surface area. Mater Res Bull. 2000;35:109–14.CrossRefGoogle Scholar
  9. 9.
    Li G, Li L, Li Y, Shi J. A highly moisture-resistant Fe-doped mesoporous Co3O4 catalyst for efficient low-temperature CO oxidation. New J Chem. 2015;39:1742–8.CrossRefGoogle Scholar
  10. 10.
    Lorenzi G, Baldi G, Di Benedetto F, Faso V, Lattanzi P, Romanelli M. Spectroscopic study of a Ni-bearing gahnite pigment. J Eur Ceram Soc. 2006;26:317–21.CrossRefGoogle Scholar
  11. 11.
    Poleti D, Vasovié D. Synthesis and characterization of ternary zinc-antimony-transition metal spinels. J Solid State Chem. 1994;112:39–44.CrossRefGoogle Scholar
  12. 12.
    Souza LKC, Zamian JR, Filho, Soledade LEB, Santos IMG, Souza AG, Scheller T, Angélica RS, Costa CEF. Blue pigments based on CoxZn1−xAl2O4 spinels synthesized by the polymeric precursor method. Dyes Pigments. 2009;81:187–92.CrossRefGoogle Scholar
  13. 13.
    Kienle C, Schinzer C, Lentmaier J, Schaal O, Kemmler-Sack S. Composites between spinels and binary oxides and their selective catalytic reduction activity. Mater Chem Phys. 1997;49:211–6.CrossRefGoogle Scholar
  14. 14.
    Han YS, Li JB, Ning XS, Yang XZ, Chi B. Study on NiO excess in preparing NiAl2O4. Mater Sci Eng A. 2004;369:241–4.CrossRefGoogle Scholar
  15. 15.
    Costa CEF, Crispim SCL, Lima SJG, Paskocimas CA, Longo E, Fernandes VJ Jr, Araújo AS, Santos IMG, Souza AG. Synthesis and thermal characterization of zirconium titanate pigments. J Therm Anal Calorim. 2004;75:467–73.CrossRefGoogle Scholar
  16. 16.
    Pechini N. US Patent No. 3.330.697. 1967.Google Scholar
  17. 17.
    Lisboa-Filho PN, Gama L, Paiva-Santos CO, Varela JA, Ortiz WA, Longo E. Crystallographic and magnetic structure of polycrystalline Zn7−xNixSb2O12 spinels. Mater Chem Phys. 2000;65:208–11.CrossRefGoogle Scholar
  18. 18.
    Porta P, Anichini A, Bucciarelli U. Distribution of nickel ions among octahedral and tetrahedral sites in NixZn1−xAl2O4 spinel solid solutions. J Chem Soc Faraday Trans. 1979;75:1876–87.CrossRefGoogle Scholar
  19. 19.
    Gouveia DS, Soledade LEB, Paskocimas CA, Longo E, Souza AG, Santos IMG. Color and structural analysis of CoxZn7−xSb2O12 pigments. Mater Res Bull. 2006;41:2049–56.CrossRefGoogle Scholar
  20. 20.
    Wei X, Chen D. Synthesis and characterization of nanosized zinc aluminate spinel by sol–gel technique. Mater Lett. 2006;60:823–7.CrossRefGoogle Scholar
  21. 21.
    Jitianu M, Jitianu A, Zaharescu M, Crisan D, Marchidan R. IR structural evidence of hydrotalcites derived oxidic forms. Vib Spectrosc. 2000;22:75–86.CrossRefGoogle Scholar
  22. 22.
    Leofanti G, Padovan M, Tozzola G, Venturelli B. Surface area and pore texture of catalysts. Catal Today. 1998;41:207–19.CrossRefGoogle Scholar
  23. 23.
    Garcia FAC, Silva JCM, Macedo JL, Dias JA, Dias SCL, Filho GNR. Synthesis and characterization of CuO/Nb2O5/MCM-41 for the catalytic oxidation of diesel soot. Microporous Mesoporous Mater. 2008;113:562–74.CrossRefGoogle Scholar
  24. 24.
    Dhak D, Pramanik P. Particle size comparison of soft-chemically prepared transition metal (Co, Ni, Cu, Zn) aluminate spinels. J Am Ceram Soc. 2006;89(3):1014–21.CrossRefGoogle Scholar
  25. 25.
    Brunold TC, Güdel HU, Cavalli E. Optical spectroscopy of Ni2+ doped crystals of Zn2SiO4. Chem Phys Lett. 1997;268:413–20.CrossRefGoogle Scholar
  26. 26.
    Weakliem HA. Optical spectra of Ni2+, Co2+, and Cu2+ in the tetrahedral sites in crystals. J Chem Phys. 1962;36(8):2117–40.CrossRefGoogle Scholar
  27. 27.
    Luo MR. Applying colour science in colour design. Opt Laser Technol. 2006;38:392–8.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Renan M. Queiroz
    • 1
  • Tiago L. Coelho
    • 2
  • Isabella M. Queiroz
    • 1
  • Luiza H. O. Pires
    • 3
  • Ieda M. G. Santos
    • 4
  • José R. Zamian
    • 1
  • Geraldo N. da Rocha Filho
    • 1
  • Carlos E. F. da Costa
    • 1
  1. 1.Faculdade de Química, ICENUniversidade Federal do ParáBelémBrazil
  2. 2.Instituto de QuímicaUniversidade Federal do Rio de Janeiro, Ilha do FundãoRio de JaneiroBrazil
  3. 3.Escola de Aplicação da UFPABelémBrazil
  4. 4.Departamento de QuímicaUniversidade Federal da ParaíbaJoão PessoaBrazil

Personalised recommendations