Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 123, Issue 2, pp 1163–1172 | Cite as

Visible-light photocatalytic degradation of ethidium bromide using carbon- and iron-modified TiO2 photocatalyst

  • Atul B. Lavand
  • Yuvraj S. Malghe
Article

Abstract

Nanosized TiO2 as well as carbon (C) and C, Fe co-doped TiO2 were synthesized using reverse microemulsion method. Thermal stability of precursor was studied using thermogravimetry and differential thermal analysis techniques. Heat-treated powders were characterized using Fourier transform infrared spectrophotometer, X-ray diffractometer, scanning electron microscope, transmission electron microscope and energy-dispersive X-ray spectroscope. Visible-light photocatalytic degradation of aqueous solution of ethidium bromide (EtBr) was investigated using C, Fe co-doped TiO2 photocatalyst. UV–visible spectrophotometer and high-pressure liquid chromatography techniques were used to analyze the concentration of EtBr during the degradation process. Various parameters affecting the photocatalytic activity of photocatalyst are studied. C-doped TiO2 acts as photosensitizer and helps to extend the light absorption wavelength of C-doped TiO2.·Fe co-doping introduces new energy levels of the transition metal ions between the band gap of TiO2 and further extends absorption wavelength in visible region. The synergistic effects of C- and Fe-modified TiO2 nanoparticles were responsible for improving visible-light photocatalytic activity.

Keywords

Visible light Microemulsion Malachite green C, Fe co-doped TiO2 

Notes

Acknowledgements

Author Lavand A. B. is thankful to UGC, New Delhi, India, for providing BSR fellowship. Authors are also thankful to Sophisticated Analytical Instrument Laboratory (SAIF) IIT, Mumbai, India, for availing FE-SEM and TEM facilities.

Supplementary material

10973_2015_5041_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1319 kb)

References

  1. 1.
    Dvortsov IA, Lunina NA, Chekanovskaya LA, Shedova EN, Gening LV, Velikodvorskaya GA. Ethidium bromide is good not only for staining of nucleic acids but also for staining of proteins after polyacrylamide gel soaking in trichloroacetic acid solution. Anal Biochem. 2006;353:293–5.CrossRefGoogle Scholar
  2. 2.
    Lunn G, Sansone EB. Ethidium bromide: destruction and decontamination of solution. Anal Biochem. 1987;162:453–8.CrossRefGoogle Scholar
  3. 3.
    Ohta T, Tokishita S, Yamagata H. Ethidium bromide and SYBR green I enhance the genotoxicity of UV-irradiation and chemical mutagens in E. coli. Mutat Res. 2001;492:91–7.CrossRefGoogle Scholar
  4. 4.
    Morales-Flores N, Pal U, Mora ES. Photocatalytic behavior of ZnO and Pt-incorporated ZnO nanoparticles in phenol degradation. Appl Catal A Gen. 2011;394:269–75.CrossRefGoogle Scholar
  5. 5.
    Ryu YB, Jung WY, Lee MS, Jeong ED, Kim HG, Yang JS, Lee G-D, Park SS, Hong S-S. Hydrothermal synthesis of titanium dioxides from peroxotitanate solution using basic additive and their photocatalytic activity on the decomposition of orange II. J Phys Chem Solids. 2008;69:1457–60.CrossRefGoogle Scholar
  6. 6.
    Zhang Z, Wang C-C, Zakaria R, Ying JY. Role of nanoparticle size in nanocrystalline TiO2-based photocatalysts. J Phys Chem B. 1998;102:10871.CrossRefGoogle Scholar
  7. 7.
    Mitsionis A, Vaimakis T. The effect of thermal treatment in TiO2 photocatalytic activity. J Therm Anal Calorim. 2013;112:621–8.CrossRefGoogle Scholar
  8. 8.
    Mahlambi M, Mishra A, Mishra S, Krawe R, Mamba B, Raichur A. Comparison of rhodamine B degradation under UV irradiation by two phase of titania nano-photocatalyst. J Therm Anal Calorim. 2012;110:847–55.CrossRefGoogle Scholar
  9. 9.
    Pulisova P, Vecernikova E, Marikova M, Balek V, Bohacek J, Subrt J. Thermal analysis methods in the characterization of photocatalytic titania precursors. J Therm Anal Calorim. 2012;108:489–92.CrossRefGoogle Scholar
  10. 10.
    Balek V, Subrt J, Bounsteva IM, Irie H, Hashimoto K. Emanation thermal analysis study of N-doped titania photoactive powders. J Therm Anal Calorim. 2008;92:161–7.CrossRefGoogle Scholar
  11. 11.
    Bakardjieva S, Stengl V, Szatmary L, Subrt J, Lukac J, Murafa N, Niznansky D, Cizek J, Jirkovsky K, Petrova N. Transformation of brookite-type TiO2 nanocrystals to rutile: correlation between microstructure and photoactivity. J Mater Chem. 2006;16:1709–16.CrossRefGoogle Scholar
  12. 12.
    Venkatachalam N, Palanichamy M, Murugesan V. Sol-gel preparation and characterization of alkaline earth metal doped nano TiO2: efficient photocatalytic degradation of 4-chlorophenol. J Mol Catal A Chem. 2007;273:177–85.CrossRefGoogle Scholar
  13. 13.
    Wang X, Li J, Kamiyama H, Moriyoshi Y, Ishigaki T. Wavelength-sensitive photocatalytic degradation of methyl orange in aqueous suspension over iron (III)-doped TiO2 nanopowders under UV and visible light irradiation. J Phys Chem B. 2006;110:6804–9.CrossRefGoogle Scholar
  14. 14.
    Yu J, Zhou M, Cheng B, Zhao X. Preparation, characterization and photocatalytic activity of in situ N, S-codoped TiO2 powders. J Mol Catal A Chem. 2006;246:176–84.CrossRefGoogle Scholar
  15. 15.
    Yu JC, Ho W, Yu JG, Yip H, Wong P, Zhao J. Efficient visible-light induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. Environ Sci Technol. 2005;39:1175–9.CrossRefGoogle Scholar
  16. 16.
    Li D, Haneda H, Labhsetwar N, Hishita S, Ohashi N. Visible-light-driven photocatalytic activity of fluorine-doped TiO2 powders by the creation of surface oxygen vacancies. Chem Phys Lett. 2005;401:579–84.CrossRefGoogle Scholar
  17. 17.
    Burda C, Lou Y, Chen X, Samia A, Stout J, Gole J. Enhanced nitrogen doping in TiO2 nanoparticles. Nano Lett. 2003;3:1049–51.CrossRefGoogle Scholar
  18. 18.
    Reddy B, Sreekanth P, Reddy E, Yamada Y, Xu Q, Sakurai H, Kobayashi T. Surface characterization of La2O3–TiO2 and V2O5/La2O3–TiO2 catalysts. J Phys Chem B. 2002;106:5695–700.CrossRefGoogle Scholar
  19. 19.
    Lavand AB, Malghe YS. Nano sized C doped TiO2 as a visible light photocatalyst for the degradation of 2,4,6-trichlorophenol. Adv Mater Lett. 2015. doi: 10.5185/amlett.2015.5800.Google Scholar
  20. 20.
    Wang C, Bottcher C, Bahnemann D, Dohrmann J. A comparative study of nanometer sized Fe(III)-doped TiO2 photocatalyst: synthesis, characterization and activity. J Mater Chem. 2003;13:2322–9.CrossRefGoogle Scholar
  21. 21.
    Zhu J, Zheng W, He B, Zhang J, Anpo M. Characterization of Fe–TiO2 photocatalyst synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water. J Mol Catal A Chem. 2004;2004(216):35–43.CrossRefGoogle Scholar
  22. 22.
    Wood DL, Tauc J. Weak absorption tails in amorphous semiconductors. Phys Rev B. 1972;5:3144–51.CrossRefGoogle Scholar
  23. 23.
    Lavand AB, Malghe YS. Synthesis, characterization, and visible light photocatalytic activity of nanosized carbon doped zinc oxide. Int J Photochem. 2015;2015:790153.CrossRefGoogle Scholar
  24. 24.
    Lavand AB, Malghe YS. Synthesis of nanosized BaZrO3 from oxalate precursor. J Therm Anal Calorim. 2014;118:1613–8.CrossRefGoogle Scholar
  25. 25.
    Malghe YS, Yadav UC. Synthesis, characterization and investigation of dielectric properties of nanosized SrZrO3. J Therm Anal Calorim. 2015. doi: 10.1007/s10973-015-4804-9.Google Scholar
  26. 26.
    Wu Y, Zhang J, Xiao L, Chen F. Properties of carbon and iron modified TiO2 photocatalyst synthesized at low temperature and photodegradation of acid orange 7 under visible light. Appl Surf Sci. 2010;256:4260–8.CrossRefGoogle Scholar
  27. 27.
    Park Y, Kim W, Park H, Tachikawa T, Majima T, Choi W. Carbon-doped TiO2 photocatalyst synthesized without using an external carbon precursor and the visible light activity. Appl Catal B Environ. 2009;91:355–61.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  1. 1.Department of ChemistryInstitute of ScienceMumbaiIndia

Personalised recommendations