Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 123, Issue 2, pp 1571–1582 | Cite as

Excess molar enthalpies for ternary mixtures containing [emim][BF4], cyclic amides and cyclic ketones

  • V. K. Sharma
  • J. Kataria
  • S. Solanki
Article
  • 96 Downloads

Abstract

The excess molar enthalpies, \( H_{{\text{123}}}^{\text{E}} \), data of ternary 1-ethyl-3-methylimidazolium tetrafluoroborate (1) + pyrrolidin-2-one or 1-methyl pyrrolidin-2-one (2) + cyclopentanone or cyclohexanone (3) mixtures have been measured at 298.15 K and 0.1 M Pa using microdifferential scanning calorimeter. The \( H_{{\text{123}}}^{\text{E}} \) values of [emim][BF4] (1) + 2-Py (2) + cyclopentanone or cyclohexanone (3) are endothermic, while those for [emim][BF4] (1) + NMP (2) + cyclopentanone or cyclohexanone (3) mixtures are negative over entire composition of x 1 and x 2. The observed data of \( H_{{\text{123}}}^{\text{E}} \) have been investigated in terms of Graph and Prigogine–Flory–Patterson theories. The results indicate that \( H_{{\text{123}}}^{\text{E}} \) values estimated by Graph theory compare well with experimental values.

Keywords

1-Ethyl-3-methylimidazolium tetrafluoroborate 1-Methyl pyrrolidin-2-one Density Excess molar enthalpy Interaction energy parameter 

Notes

Acknowledgements

Jyoti Kataria is grateful to UGC, New Delhi, India, for the award of SRF. The authors are also grateful to the Head of Chemistry Department and authorities of M. D. University, Rohtak, for providing research facilities.

References

  1. 1.
    Xu H, Zhao D, Xu P, Liu F, Gao G. Conductivity and viscosity of 1-allyl-3-methyl-imidazolium chloride + water and + ethanol from 293.15 K to 333.15 K. J Chem Eng Data. 2005;50:133–5.CrossRefGoogle Scholar
  2. 2.
    Zhang S, Li X, Chen H, Wang J, Zhang J, Zhang M. Determination of physical properties for the binary system of 1-ethyl-3-methylimidazolium tetrafluoroborate + H2O. J Chem Eng Data. 2004;49:760–4.CrossRefGoogle Scholar
  3. 3.
    Arce A, Soto A, Ortega J, Sabater G. Viscosities and volumetric properties of binary and ternary mixtures of tris(2-hydroxyethyl) methylammonium methylsulfate + water + ethanol at 298.15 K. J Chem Eng Data. 2008;53:770–5.CrossRefGoogle Scholar
  4. 4.
    Abdulagatov IM, Tekin A, Safarov J, Shahverdiyev A, Hassel E. High-pressure densities and derived volumetric properties (excess, apparent and partial molar volumes) of binary mixtures of methanol + [BMIM][PF6]. J Solut Chem. 2008;37:801–33.CrossRefGoogle Scholar
  5. 5.
    Saravanan R, Maiya MP. Comparison of methanol-based working fluid combinations for a bubble pump-operated vapour absorption refrigerator. Int J Energy Res. 1998;22:715–31.CrossRefGoogle Scholar
  6. 6.
    Gonzalez B, Calvar N, Gomez E, Dominguez A. Physical properties of the ternary system (ethanol + water + 1-butyl-3-methylimidazolium methylsulphate) and its binary mixtures at several temperatures. J Chem Thermodyn. 2008;40:1274–81.CrossRefGoogle Scholar
  7. 7.
    Guttman TK, Myslinski A, Wilczura HJ. Molar excess enthalpies of binary mixtures of pyridine bases + hexan-1-OL. J Therm Anal Cal. 1984;29:173–7.CrossRefGoogle Scholar
  8. 8.
    Benson GC, Luo B. Lu BCY. Excess enthalpies of dibutyl ether + nK -alkane mixtures at 298.15. Can J Chem. 1988;66:531–4.CrossRefGoogle Scholar
  9. 9.
    Vicente IG, Lisbona NG, Velasco I, Otin S, Embid JM, Kehiaian HV. Excess enthalpies of 1-chloroalkane + benzene. Measurement and analysis in terms of group contributions (DISQUAC). Fluid Phase Equilib. 1989;49:251–62.CrossRefGoogle Scholar
  10. 10.
    Lancaster NM, Wormald CJ. Excess molar enthalpies of nine binary steam mixtures: new and corrected values. J Chem Eng Data. 1990;35:11–6.CrossRefGoogle Scholar
  11. 11.
    Ue M, Takeda M, Takahashi M, Takehara M. Ionic liquids with low melting points and their application to double-layer capacitor electrolytes batteries and energy conversion. Electrochem Solid State Lett. 2002;5:A119–21.CrossRefGoogle Scholar
  12. 12.
    Balducci A, Bardi U, Caporali S, Mastragostino M, Soavi F. Ionic liquids for hybrid supercapacitors. Electrochem Commun. 2004;6:566–70.CrossRefGoogle Scholar
  13. 13.
    Sato T, Masuda G, Takagi K. Electrochemical properties of novel ionic liquids for electric double layer capacitor applications. Electrochim Acta. 2004;49:3603–11.CrossRefGoogle Scholar
  14. 14.
    Wang P, Zakeeruddin SM, Exnar I, Grätzel M. High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte. Chem Commun. 2002;24:2972–3.CrossRefGoogle Scholar
  15. 15.
    Souza RFD, Padilha JC, Goncalves RS, Dupont J. Room temperature dialkylimidazolium ionic liquid-based fuel cells. Electrochem Commun. 2003;5:728–31.CrossRefGoogle Scholar
  16. 16.
    García B, Lavallée S, Perron SG, Michot C. Room temperature molten salts as lithium battery electrolyte. Electrochim Acta. 2004;49:4583–8.CrossRefGoogle Scholar
  17. 17.
    Yekeler H, Guven A, Ozkan R. Hydrogen bonding and dimeric self-association of 2-pyrrolidinone: An ab initio study. J Comput Aided Mol Des. 1999;135:89–596.Google Scholar
  18. 18.
    Jouyban A, Fakhree MAA, Shayanfar A. Review of pharmaceutical applications of N-Methyl-2-Pyrrolidone. J Pharm Pharmaceut Sci. 2010;13(4):524–35.Google Scholar
  19. 19.
    Rathnam MV, Sayed RT, Bhanushali KR, Kumar MSS. Density and viscosity of binary mixtures of n-butyl acetate with ketones at (298.15, 303.15, 308.15, and 313.15) K. J Chem Eng Data. 2012;57:1721–7.CrossRefGoogle Scholar
  20. 20.
    Tsierkezos NG, Molinou IE, Polizos GA. Relative permittivities, speeds of sound, viscosities, and densities of cyclohexanone +cis-decalin and cyclohexanone +trans-decalin mixtures at 283.15, 293.15, and 303.15 K. J Chem Eng Data. 2002;47:1492–5.CrossRefGoogle Scholar
  21. 21.
    Sharma VK, Kataria J, Bhagour S. Thermodynamic investigations of 1-ethyl-3-methylimidazolium tetrafluoroborate and cycloalkanone mixtures. J Therm Anal Calorim. 2014;118:431–47.CrossRefGoogle Scholar
  22. 22.
    Sharma D, Bhagour S, Sharma VK. Thermodynamic and topological studies of 1-ethyl-3-methylimidazolium tetrafluoroborate + pyrrolidin-2-one and 1-methyl-pyrrolidin-2-one mixtures. J Chem Eng Data. 2012;57:3488–97.CrossRefGoogle Scholar
  23. 23.
    Sharma VK, Kataria J, Solanki S. Molecular interactions in binary mixtures of lactams with cyclic alkanones. J Solution Chem. 2014;43:486–524.CrossRefGoogle Scholar
  24. 24.
    Scholz E. Karl Fischer titration. Berlin: Springer; 1984.Google Scholar
  25. 25.
    Garcia B, Herrera C, Leal JS. Shear viscosities of binary liquid mixtures: 2-pyrrolidinone with 1-alkanols. J Chem Eng Data. 1991;36:269–74.CrossRefGoogle Scholar
  26. 26.
    Letcher TM, Lachwa J, Domanska U. The excess molar volumes and enthalpies of (N-methyl-2-pyrrolidinone + an alcohol) at T = 298.15 K and The application of the ERAS theory. J Chem Thermodyn. 2001;33:1169–79.CrossRefGoogle Scholar
  27. 27.
    Riddick JA, Bunger WB, Sakano TK. Organic solvents physical properties and methods of purification. 4th ed. New York: Wiley Interscience; 1986.Google Scholar
  28. 28.
    Curras MR, Gomes MFC, Husson P, Padua AAH, Garcia J. Calorimetric and volumetric study on binary mixtures 2,2,2-trifluoroethanol + (1-Butyl-3-methylimidazolium tetrafluoroborate or 1-ethyl-3-methylimidazolium tetrafluoroborate). J Chem Eng Data. 2010;55:5504–12.CrossRefGoogle Scholar
  29. 29.
    Navia P, Troncoso J, Romani L. Excess magnitudes for ionic liquid binary mixtures with a common ion. J Chem Eng Data. 2007;52:1369–74.CrossRefGoogle Scholar
  30. 30.
    Stoppa A, Zech O, Kunz W, Buchner R. The conductivity of imidazolium-based ionic liquids from (−35 to 195) °C. A. Variation of Cation’s Alkyl Chain. J Chem Eng Data. 2010;55:1768–73.CrossRefGoogle Scholar
  31. 31.
    Pal A, Bhardwaj RK. Excess molar volumes and viscosities for binary mixtures of 2-propoxyethanol and of 2-isopropoxyethanol with 2-pyrrolidinone, N-methyl-2-pyrrolidinone, N, N-Dimethylformamide, and N,N-Dimethylacetamide at 298.15 K. J Chem Eng Data. 2002;47:1128–34.CrossRefGoogle Scholar
  32. 32.
    Papamatthaiakis D, Aroni F, Havredaki V. Isentropic compressibilities of (amide + water) mixtures: a comparative study. J Chem Thermodyn. 2008;40:107–18.CrossRefGoogle Scholar
  33. 33.
    Garcia-Abuin A, Gomez-Diaz D, Rubia MDL, Navaza JM. Density, speed of sound, viscosity, refractive index, and excess volume of N-methyl-2-pyrrolidone + ethanol (or water or ethanolamine) from T = (293.15 to 323.15) K. J Chem Eng Data. 2011;56:646–51.CrossRefGoogle Scholar
  34. 34.
    Kumari PG, Radhamma M, Sekhar GC, Rao MV. Excess volumes and speeds of sound of N-methyl-2-pyrrolidone with chloroethanes and chloroethenes at 303.15 K. J Chem Eng Data. 2002;47:425–7.CrossRefGoogle Scholar
  35. 35.
    Changsheng Y, Peisheng MA, Qing Z. Excess molar volumes and viscosities of binary mixtures of p-xylene with cyclohexane, n-heptane, n-octane, sulfolane, N-methyl-2-pyrrolidinone and acetic acid at 303.15 K and 323.25 K and atmospheric pressure. Chinese J Chem Eng. 2004;12:700–6.Google Scholar
  36. 36.
    Ciocirlan O, Teodorescu M, Dragoesce D, Iulian O, Barhala A. Densities and excess molar volumes of the binary mixtures of cyclopentanone with chloroalkanes at T = (288.15, 298.15, 308.15, and 318.15) K. J Chem Eng Data. 2010;55:3891–5.CrossRefGoogle Scholar
  37. 37.
    Dragoescu D, Teodorescu M, Barhala A. Isothermal (vapour plus liquid) equilibria and excess Gibbs free energies in some binary (cyclopentanone plus chloroalkane) mixtures at temperatures from 298.15 to 318.15 K. J Chem Thermodyn. 2007;39:1452–7.CrossRefGoogle Scholar
  38. 38.
    Palaiologou MM, Arianas GK, Tsierkezos NG. Thermodynamic investigation of dimethyl sulfoxide binary mixtures at 293.15 and 313.15 K. J Solution Chem. 2006;35:1551–65.CrossRefGoogle Scholar
  39. 39.
    Lange NA. Handbook of Chemistry. 11th ed. New York: Mc Graw-Hill; 1973.Google Scholar
  40. 40.
    Nayak JN, Aralaguppi MI, Aminabhavi TM. Density, viscosity, refractive index, and speed of sound in the binary mixtures of 1,4-dioxane + ethyl acetoacetate, + diethyl oxalate, + diethyl phthalate, or + dioctyl phthalate at 298.15, 303.15, and 308.15 K. J Chem Eng Data. 2003;48:1489–94.CrossRefGoogle Scholar
  41. 41.
    Ciocirlan O, Teodorescu M, Dragoescu D, Iulian O, Barhala A. Densities and excess molar volumes for binary mixtures of cyclohexanone with chloroalkanes at temperatures between (288.15 and 318.15) K. J Chem Eng Data. 2010;55:968–73.CrossRefGoogle Scholar
  42. 42.
    Singh S, Rattan VK, Kapoor S, Kumar R, Rampal A. Thermophysical properties of binary mixtures of cyclohexane + nitrobenzene, cyclohexane + nitrobenzene, and cyclohexane + cyclohexanone at (298.15, 303.15, and 308.15) K. J Chem Eng Data. 2005;50:288–92.CrossRefGoogle Scholar
  43. 43.
    Rafiee HR, Ranjbar S, Poursalman F. Densities and viscosities of binary and ternary mixtures of cyclohexanone, 1,4-dioxane and isooctane from T = (288.15 to 313.15) K. J Chem Thermodyn. 2012;54:266–71.CrossRefGoogle Scholar
  44. 44.
    George J, Sastry NV. Densities, viscosities, speeds of sound, and relative permittivities for water + cyclic amides (2-pyrrolidinone, 1-methyl-2-pyrrolidinone and 1-vinyl-2-pyrrolidinone at different temperatures. J Chem Eng Data. 2004;49:235–42.CrossRefGoogle Scholar
  45. 45.
    Bermudez-Salguero C, Gracia-Fadrique J, Calvo E, Amigo A. Densities, refractive indices, speeds of sound, and surface tensions for dilute aqueous solutions of 2-methyl-1-propanol, cyclopentanone, cyclohexanone, cyclohexanol, and ethyl acetoacetate at 298.15 K. J Chem Eng Data. 2011;56:3823–9.CrossRefGoogle Scholar
  46. 46.
    Tsierkezos NG, Molinou IE, Filippou AC. Thermodynamic properties of binary mixtures of cyclohexanone with n-alkanols (C1-C5) at 293.15 K. J Solution Chem. 2005;34:1371–86.CrossRefGoogle Scholar
  47. 47.
    Sanmamed YA, Navia P, Salgado DG, Troncoso J, Romaní L. Pressure and temperature dependence of isobaric heat capacity for [Emim][BF4], [Bmim][BF4], [Hmim][BF4] and [Omim][BF4]. J Chem Eng Data. 2010;55:600–4.CrossRefGoogle Scholar
  48. 48.
    Nishikawa K, Ohomura K, Tamura K, Murakami S. Excess thermodynamic properties of mixtures of cyclohexanone and benzene at 298.15 and 308.15 K and the effect of excess expansion factor. Thermochim Acta. 1995;267:323–32.CrossRefGoogle Scholar
  49. 49.
    Neeti Yadav JS, Jangra SK, Dimple Sharma VK. Thermodynamic studies of molecular interactions in mixtures of o-toulidine with pyridine and picolines: excess molar volumes, excess molar enthalpies, and excess isentropic compressibilities. J Chem Thermodyn. 2011;43:782–95.CrossRefGoogle Scholar
  50. 50.
    Dubey GP, Sharma M. Temperature and composition dependence of the densities, viscosities, and speeds of sound of binary liquid mixtures of 1-butanol with hexadecane and squalane. J Chem Eng Data. 2008;53:1032–8.CrossRefGoogle Scholar
  51. 51.
    Sharma VK, Solanki S, Bhagour S, Sharma D. Excess molar enthalpies of ternary mixtures containing 1-ethyl-3-methylimidazolium tetrafluoroborate and organic solvents. Thermochim Acta. 2013;569:36–41.CrossRefGoogle Scholar
  52. 52.
    Sabbah R, Xu-wu A, Chickos JS, Leitão MLP, Roux MV, Torres LA. Reference materials for calorimetry and differential thermal analysis. Thermochim Acta. 1999;331:137.Google Scholar
  53. 53.
    Redlich O, Kister AT. Algebraic representation of thermodynamic properties and the classification of solutions. Ind Eng Chem. 1948;40:345–8.CrossRefGoogle Scholar
  54. 54.
    Huggins ML. The thermodynamic properties of liquids included solutions: part 1. Intermolecular energies in mono atomic liquids and their mixtures. J Phys Chem. 1970;74:371–8.CrossRefGoogle Scholar
  55. 55.
    Huggins ML. The thermodynamic properties of liquids included solutions: part 2. Polymer solutions considered as diatomic system. Polymer. 1971;12:389–99.CrossRefGoogle Scholar
  56. 56.
    Singh PP, Bhatia M. Energetic of molecular interactions in binary mixtures of non-electrolytes containing a salt. J Chem Soc Faraday Trans. 1989;I(85):3807–12.CrossRefGoogle Scholar
  57. 57.
    Singh PP, Nigam RK, Singh KC, Sharma VK. Topological aspects of the thermodynamics of binary mixtures of non-electrolytes. Thermochim Acta. 1981;46:175–90.CrossRefGoogle Scholar
  58. 58.
    Yadav JS, Sharma D, Sharma VK. Topological investigations of thermodynamic properties of binary mixtures containing 2-pyrrolidinone. Thermochim Acta. 2009;489:45–52.CrossRefGoogle Scholar
  59. 59.
    Sharma VK, Siwach RK. Dimple. Excess molar volumes, excess molar enthalpies, and excess isentropic compressibilities of tetrahydropyran with aromatic hydrocarbons tetrahydropyran with aromatic hydrocarbons. J Chem Thermodyn. 2011;43:39–46.CrossRefGoogle Scholar
  60. 60.
    Singh PP. Topological aspects of the effect of temperature and pressure on the thermodynamics of binary mixtures of non-electrolytes. Thermochim Acta. 1983;66:37–73.CrossRefGoogle Scholar
  61. 61.
    Kier LB, Yalkowasky SH, Sinkula AA, Valvani SC. Physico-chemical properties of drugs. Mercel Dekker. New York chapter 9. 1980, (a) p. 282, (b) p. 295.Google Scholar
  62. 62.
    Van HT, Patterson D. Volumes of mixing and the P * effect: part I. Hexane isomers with normal and branched hexadecane. J Solut Chem. 1982;11:793–805.CrossRefGoogle Scholar
  63. 63.
    Flory PJ. The statistical thermodynamic of liquid mixtures. J Am Chem Soc. 1965;87:1833–8.CrossRefGoogle Scholar
  64. 64.
    Flory PJ. The thermodynamic properties of mixture of small non-polar molecules. J Am Chem Soc. 1965;87:1838–46.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  1. 1.Department of ChemistryM. D. UniversityRohtakIndia

Personalised recommendations