Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 123, Issue 3, pp 2081–2090 | Cite as

DSC kinetic study of the incompatibility of doxepin with dextrose

Application to pharmaceutical preformulation studies
  • Faranak Ghaderi
  • Mahboob Nemati
  • Mohammad R. Siahi-Shadbad
  • Hadi Valizadeh
  • Farnaz Monajjemzadeh
Article

Abstract

In the present paper, the physicochemical incompatibility of doxepin with dextrose was evaluated in solid-state mixtures. The compatibility was evaluated using different physicochemical methods such as differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy and mass spectrometry. Non-isothermally stressed physical mixtures were used to study the solid-state kinetic parameters. Different thermal models such as Friedman, Flynn–Wall–Ozawa and Kissinger–Akahira–Sunose were used for the characterization of the drug–excipient mixtures. Overall, the incompatibility of doxepin as a tertiary amine with dextrose as a reducing carbohydrate was successfully assessed. DSC-based kinetic analysis is a simple and fast method in evaluation of different drug–excipient mixtures incompatibility. Finally, it can be recommended to exclude dextrose from doxepin pharmaceutical formulations and also to apply the easy and versatile DSC method in kinetic study of drug–excipient incompatibility.

Keywords

Doxepin Dextrose Incompatibility Kinetic DSC Mass 

Notes

Acknowledgements

This paper was extracted from a PhD thesis (No: 91) submitted to faculty of Pharmacy, Tabriz University of Medical Sciences and financially supported by the same University.

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest.

References

  1. 1.
    Giron D. Applications of thermal analysis and coupled techniques in pharmaceutical industry. J Therm Anal Calorim. 2002;68:335–57.CrossRefGoogle Scholar
  2. 2.
    Tita B, Fulias A, Stefanescu M, Marian E, Tita D. Kinetic study of decomposition of ibuprofen under isothermal conditions. Rev Chim Bucharest. 2011;2:216–21.Google Scholar
  3. 3.
    Monajjemzadeh F, Ghaderi F. Thermal analysis methods in pharmaceutical quality control. J Mol Pharm Org Process Res. 2015;3:121.Google Scholar
  4. 4.
    Venkataram S, Khohlokwane M, Wallis S. Differential scanning calorimetry as a quick scanning technique for solid state stability studies. Drug Dev Ind Pharm. 1995;21:847–55.CrossRefGoogle Scholar
  5. 5.
    Mura P, Manderioli A, Bramanti G, Furlanetto S, Pinzauti S. Utilization of differential scanning calorimetry as a screening technique to determine the compatibility of ketoprofen with excipients. Int J Pharm. 1995;119:71–9.CrossRefGoogle Scholar
  6. 6.
    Mura P, Faucci M, Manderioli A, Bramanti G, Ceccarelli L. Compatibility study between ibuproxam and pharmaceutical excipients using differential scanning calorimetry, hot-stage microscopy and scanning electron microscopy. J Pharmaceut Biomed. 1998;18:151–63.CrossRefGoogle Scholar
  7. 7.
    Singh AV. A DSC study of some biomaterials relevant to pharmaceutical industry. J Therm Anal Calorim. 2013;112:791–3.CrossRefGoogle Scholar
  8. 8.
    Vyazovkin S, Dollimore D. Linear and nonlinear procedures in isoconversional computations of the activation energy of nonisothermal reactions in solids. J Chem Inf Comput Sci. 1996;36:42–5.CrossRefGoogle Scholar
  9. 9.
    He G, Riedl B, Aït-Kadi A. Model-free kinetics: curing behavior of phenol formaldehyde resins by differential scanning calorimetry. J Appl Polym Sci. 2003;87:433–40.CrossRefGoogle Scholar
  10. 10.
    Koga N. Ozawa’s kinetic method for analyzing thermoanalytical curves. J Therm Anal Calorim. 2013;113(3):1527–41.CrossRefGoogle Scholar
  11. 11.
    Fuliaş A, Ledeţi I, Vlase G, Popoiu C, Hegheş A, Bilanin M, et al. Thermal behaviour of procaine and benzocaine Part II: compatibility study with some pharmaceutical excipients used in solid dosage forms. Chem Cent J. 2013;7:140–50.CrossRefGoogle Scholar
  12. 12.
    Verma RK, Garg S. Selection of excipients for extended release formulations of glipizide through drug—excipient compatibility testing. J Pharmaceut Biomed. 2005;38:633–44.CrossRefGoogle Scholar
  13. 13.
    Hajak G, Rodenbeck A, Voderholzer U, Riemann D, Cohrs S, Hohagen F, et al. Doxepin hydrochloride in the treatment of primary insomnia: a placebo-controlled, double-blind, polysomnographic study. J Clin Psychiat. 2001;62:453–63.CrossRefGoogle Scholar
  14. 14.
    Use F, Use H, Contra-indications W. Martindale: the complete drug reference. 2007.Google Scholar
  15. 15.
    Markov D, Doghramji K. Doxepin hydrochloride for insomnia. Curr Psychol. 2010;9:67.Google Scholar
  16. 16.
    Allen LV Jr. Meperidine hydrochloride and promethazine hydrochloride capsules. US Pharm. 2010;35:36–7.Google Scholar
  17. 17.
    Serajuddin A, Thakur AB, Ghoshal RN, Fakes MG, Ranadive SA, Morris KR, et al. Selection of solid dosage form composition through drug—excipient compatibility testing. J Pharm Sci. 1999;88:696–704.CrossRefGoogle Scholar
  18. 18.
    Chang WL. Decomposition behavior of polyurethanes via mathematical simulation. J Appl Polym Sci. 1994;53:1759–69.CrossRefGoogle Scholar
  19. 19.
    Friedman HL, editor.Kinetics of thermal degradation of char forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci. 1964; Wiley Online Library.Google Scholar
  20. 20.
    Ozawa T. Kinetics of non-isothermal crystallization. Polymer. 1971;12:150–8.CrossRefGoogle Scholar
  21. 21.
    Muraleedharan K. Thermal decomposition kinetics of potassium iodate. J Therm Anal Calorim. 2013;114:491–6.CrossRefGoogle Scholar
  22. 22.
    Zhu L, Seburg RA, Tsai E, Puech S, Mifsud J-C. Flavor analysis in a pharmaceutical oral solution formulation using an electronic-nose. J Pharmaceut Biomed. 2004;34:453–61.CrossRefGoogle Scholar
  23. 23.
    Rowe RC, Sheskey PJ, Quinn ME, Association AP, Press P. Handbook of pharmaceutical excipients, vol. 6. London: Pharmaceutical press; 2009.Google Scholar
  24. 24.
    Pani N, Nath L, Acharya S. Compatibility studies of nateglinide with excipients in immediate release tablets. Acta Pharmaceut. 2011;61:237–47.CrossRefGoogle Scholar
  25. 25.
    Huang Y, Cheng Y, Alexander K, Dollimore D. The thermal analysis study of the drug captopril. Thermochim Acta. 2001;367:43–58.CrossRefGoogle Scholar
  26. 26.
    Medina DAV, Ferreira APG, Cavalheiro ETG. Thermal investigation on polymorphism in sodium saccharine. J Therm Anal Calorim. 2014;117:361–7.CrossRefGoogle Scholar
  27. 27.
    Tiţa B, Fuliaş A, Bandur G, Rusu G, Tiţa D. Thermal stability of ibuprofen. Kinetic study under non-isothermal conditions. Rev Roum Chim. 2010;55:553–8.Google Scholar
  28. 28.
    Marini A, Berbenni V, Pegoretti M, Bruni G, Cofrancesco P, Sinistri C, et al. Drug-excipient compatibility studies by physico-chemical techniques: the case of Atenolol. J Therm Anal Calorim. 2003;73:547–61.CrossRefGoogle Scholar
  29. 29.
    Joshi B, Patil V, Pokharkar V, Pokharkar V. Compatibility studies between carbamazepine and tablet excipients using thermal and non-thermal methods. Drug Dev Ind Pharm. 2002;28:687–94.CrossRefGoogle Scholar
  30. 30.
    Moffat AC, Osselton MD, Widdop B. Clarke’s analysis of drugs and poisons, vol. 3. London: Pharmaceutical press; 2011.Google Scholar
  31. 31.
    Monajjemzadeh F, Hassanzadeh D, Valizadeh H, Siahi-Shadbad MR, Mojarrad JS, Robertson T, et al. Assessment of feasibility of Maillard reaction between baclofen and lactose by liquid chromatography and tandem mass spectrometry, application to pre formulation studies. AAPS Pharm Sci Tech. 2009;10:649–59.CrossRefGoogle Scholar
  32. 32.
    Namli H, Turhan O. Background defining during the imine formation reaction in FT-IR liquid cell. Spectrochim Acta A. 2006;64:93–100.CrossRefGoogle Scholar
  33. 33.
    Coulter C, Taruc M, Tuyay J, Moore C. Antidepressant drugs in oral fluid using liquid chromatography-tandem mass spectrometry. J Anal Toxicol. 2010;34:64–72.CrossRefGoogle Scholar
  34. 34.
    Lee MS. Kerns EH.LC/MS applications in drug development. Mass Spectrom Rev. 1999;18:187–279.CrossRefGoogle Scholar
  35. 35.
    Harmon PA, Yin W, Bowen WE, Tyrrell R, Reed RA. Liquid chromatography—mass spectrometry and proton nuclear magnetic resonance characterization of trace level condensation products formed between lactose and the amine-containing diuretic hydrochlorothiazide. J Pharm Sci. 2000;89:920–9.CrossRefGoogle Scholar
  36. 36.
    Qiu Z, Stowell JG, Morris KR, Byrn SR, Pinal R. Kinetic study of the Maillard reaction between metoclopramide hydrochloride and lactose. Int J Pharm. 2005;303:20–30.CrossRefGoogle Scholar
  37. 37.
    Wirth DD, Baertschi SW, Johnson RA, Maple SR, Miller MS, Hallenbeck DK, et al. Maillard reaction of lactose and fluoxetine hydrochloride, a secondary amine. J Pharm Sci. 1998;87:31–9.CrossRefGoogle Scholar
  38. 38.
    Monajjemzadeh F, Hassanzadeh D, Valizadeh H, Siahi-Shadbad MR, Mojarrad JS, Robertson TA, et al. Detection of gabapentin-lactose Maillard reaction product (Schiff’s Base): Application to solid dosage form preformulation. Part 1 and 2. Pharmind Die Pharm Ind. 2011;73:174–7.Google Scholar
  39. 39.
    Bruni G, Amici L, Berbenni V, Marini A, Orlandi A. Drug-excipient compatibility studies. Search of interaction indicators. J Therm Anal Calorim. 2002;68:561–73.CrossRefGoogle Scholar
  40. 40.
    Balestrieri F, Magrì AD, Magrì AL, Marini D, Sacchini A. Application of differential scanning calorimetry to the study of drug-excipient compatibility. Thermochim Acta. 1996;285:337–45.CrossRefGoogle Scholar
  41. 41.
    Stulzer H, Rodrigues P, Cardoso T, Matos J, Silva M. Compatibility studies between captopril and pharmaceutical excipients used in tablets formulations. J Therm Anal Calorim. 2008;91:323–8.CrossRefGoogle Scholar
  42. 42.
    Santos AFO, Basílio I Jr, De Souza F, Medeiros A, Pinto MF, De Santana D, et al. Application of thermal analysis in study of binary mixtures with metformin. J Therm Anal Calorim. 2008;93:361–4.CrossRefGoogle Scholar
  43. 43.
    Fulias A, Vlase T, Vlase G, Szabadai Z, Rusu G, Bandur G, et al. Thermoanalytical study of cefadroxil and its mixtures with different excipients. Rev Chim Bucharest. 2010;4:11.Google Scholar
  44. 44.
    Singh AV, Nath LK. Evaluation of compatibility of lamivudine with tablet excipients and a novel synthesized polymer. J Mater Environ Sci. 2011;2:243–50.Google Scholar
  45. 45.
    Cui H-W, Jiu J-T, Nagao S, Sugahara T, Suganuma K, Uchida H. Using Ozawa method to study the curing kinetics of electrically conductive adhesives. J Therm Anal Calorim. 2014;117:1365–73.CrossRefGoogle Scholar
  46. 46.
    Fulias A, Vlase T, Vlase G, Szabadai Z, Rusu G, Bandur G, et al. Thermoanalytical study of cefadroxil and its mixtures with different excipients. Rev Chim-Bucharest. 2010;12:1202–6.Google Scholar
  47. 47.
    Díaz IBZ, Chalova VI, O’Bryan CA, Crandall PG, Ricke SC. Effect of soluble maillard reaction products on cad: a expression in Salmonella typhimurium. J Environ Sci Heal B. 2010;45:162–6.CrossRefGoogle Scholar
  48. 48.
    Delgado-Andrade C, Morales FJ, Seiquer I. Pilar Navarro M. Maillard reaction products profile 39 and intake from Spanish typical dishes. Food Res Int. 2010;43:1304–11.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Faranak Ghaderi
    • 1
    • 2
  • Mahboob Nemati
    • 1
    • 3
  • Mohammad R. Siahi-Shadbad
    • 1
    • 4
  • Hadi Valizadeh
    • 5
  • Farnaz Monajjemzadeh
    • 1
    • 4
  1. 1.Department of Pharmaceutical and Food ControlTabriz University of Medical SciencesTabrizIran
  2. 2.Student Research CommitteeTabriz University of Medical SciencesTabrizIran
  3. 3.Biotechnology Research CenterTabriz University of Medical SciencesTabrizIran
  4. 4.Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
  5. 5.Department of PharmaceuticsTabriz University of Medical SciencesTabrizIran

Personalised recommendations