Journal of Thermal Analysis and Calorimetry

, Volume 123, Issue 1, pp 873–880 | Cite as

Melting process in a rectangular thermal storage cavity heated from vertical walls



Thermal energy storage is critical for reducing the mismatch between energy supply and demand as well as plays an important role in energy conservation. The melting process in a rectangular thermal storage cavity is investigated numerically. The numerical model is developed and verified by the experimental results. The cavity aspect ratios are varied from 0.1 to 10. The vertical walls of the cavity are heated uniformly, while the horizontal walls are considered insulated. The computational results show how the transient phase-change process depends on the aspect ratio. It is found that the aspect ratios affect dramatically not only the time of full thermal energy storage but also convection currents inside the cavity. The optimized thermal storage performance is obtained for the aspect ratios ≥1.


Melting heat transfer Natural convection Rectangular cavity Aspect ratios 



This study is supported by the Scientific Research Start-up Foundation of Xiangtan University (Project No. 07KZ/KZ08053). The author also takes this opportunity to express sincere respect to the anonymous reviewers for their valuable comments and suggestions.


  1. 1.
    Gil A, Medrano M, Martorell I, Lazaro A, Dolado P, Zalba B, Cabeza LF. State of the art on high temperature thermal energy storage for power generation. Part 1—concepts, materials and modellization. Renew Sustain Energy Rev. 2010;14:31–55.CrossRefGoogle Scholar
  2. 2.
    Waqas A, Din ZU. Phase change material (PCM) storage for free cooling of buildings—a review. Renew Sustain Energy Rev. 2013;18:607–25.CrossRefGoogle Scholar
  3. 3.
    Pielichowska K, Pielichowski K. Phase change materials for thermal energy storage. Prog Mater Sci. 2014;65:67–123.CrossRefGoogle Scholar
  4. 4.
    Herrmann U, Kearney DW. Survey of thermal energy storage for parabolic trough power plants. J Sol Energy. 2002;124:145–52.CrossRefGoogle Scholar
  5. 5.
    Jeon J, Lee JH, Seo J, Jeong SG, Kim S. Application of PCM thermal energy storage system to reduce building energy consumption. J Therm Anal Calorim. 2013;111:279–88.CrossRefGoogle Scholar
  6. 6.
    Beckermann C, Viskanta R. Effect of solid subcooling on natural convection melting of a pure metal. J Heat Transf. 1989;111:416–24.CrossRefGoogle Scholar
  7. 7.
    Wang Y, Amiri A, Vafai K. An experimental investigation of the melting process in a rectangular enclosure. Int J Heat Mass Tran. 1999;42:3659–72.CrossRefGoogle Scholar
  8. 8.
    Gong ZX, Devahastin S, Mujumdar AS. Enhanced heat transfer in free convection-dominated melting in a rectangular cavity with an isothermal vertical wall. Appl Therm Eng. 1999;19:1237–51.CrossRefGoogle Scholar
  9. 9.
    Ghasemi B, Molki M. Melting of unfixed solids in square cavities. Int J Heat Fluid Flow. 1999;20:446–52.CrossRefGoogle Scholar
  10. 10.
    Zivkovic B, Fujii I. An analysis of isothermal phase change of phase change materials within rectangular and cylindrical containers. Sol Energy. 2001;70:51–61.CrossRefGoogle Scholar
  11. 11.
    Jiji LM, Gaye S. Analysis of solidification and melting of PCM with energy generation. Appl Therm Eng. 2006;26:568–75.CrossRefGoogle Scholar
  12. 12.
    Du Y, Yuan Y, Jia D, Cheng B, Mao J. Experimental investigation on melting characteristics of ethanolamine–water binary mixture used as PCM. Int Commun Heat Mass. 2007;34:1056–63.CrossRefGoogle Scholar
  13. 13.
    Wang S, Faghri A, Bergman TL. A comprehensive numerical model for melting with natural convection. Int J Heat Mass Transf. 2010;53:1986–2000.CrossRefGoogle Scholar
  14. 14.
    EI Qarnia H, Draoui A, Lakhal EK. Computation of melting with natural convection inside a rectangular enclosure heated by discrete protruding heat sources. Appl Math Model. 2013;37:3968–81.CrossRefGoogle Scholar
  15. 15.
    Ye WB, Zhu DS, Wang N. Numerical simulation on phase-change thermal storage/release in a plate-fin unit. Appl Therm Eng. 2011;31:3871–84.CrossRefGoogle Scholar
  16. 16.
    Ye WB, Zhu DS, Wang N. Fluid flow and heat transfer in a latent thermal energy unit with different phase change material (PCM) cavity volume fractions. Appl Therm Eng. 2012;42:49–57.CrossRefGoogle Scholar
  17. 17.
    Ye WB, Zhu DS, Wang N. Effect of the inclination angles on thermal energy storage in a quadrantal cavity. J Therm Anal Calorim. 2012;110:1487–92.CrossRefGoogle Scholar
  18. 18.
    Kamkari B, Shokouhmand H, Bruno F. Experimental investigation of the effect of inclination angle on convection-driven melting of phase change material in a rectangular enclosure. Int J Heat Mass Transf. 2014;72:186–200.CrossRefGoogle Scholar
  19. 19.
    Kamkari B, Shokouhmand H. Experimental investigation of phase change material melting in rectangular enclosures with horizontal partial fins. Int J Heat Mass Transf. 2014;78:839–51.CrossRefGoogle Scholar
  20. 20.
    Shokouhmand H, Kamkari B. Experimental investigation on melting heat transfer characteristics of lauric acid in a rectangular thermal storage unit. Exp Therm Fluid Sci. 2013;50:201–12.CrossRefGoogle Scholar
  21. 21.
    Hu ZP, Li AG, Gao R, Yin HG. Effect of the length ratio on thermal energy storage in wedge-shaped enclosures. J Therm Anal Calorim. 2014;117:807–16.CrossRefGoogle Scholar
  22. 22.
    Hu ZP, Li AG, Gao R, Yin HG. Enhanced heat transfer for PCM melting in the frustum-shaped unit with multiple PCMs. J Therm Anal Calorim. 2015;120:1407–16.CrossRefGoogle Scholar
  23. 23.
    Tyagi VV, Pandey AK, Kothari R, Tyagi SK. Thermodynamics and performance evaluation of encapsulated PCM-based energy storage system for heating application in building. J Therm Anal Calorim. 2014;115:915–24.CrossRefGoogle Scholar
  24. 24.
    Harikrishnan S, Deepak K, Kalaiselvam S. Thermal energy storage behavior of composite using hybrid nanomaterials as PCM for solar heating systems. J Therm Anal Calorim. 2014;115:1563–71.CrossRefGoogle Scholar
  25. 25.
    Wu SY. Enhanced heat transfer experimental and simulation research of nanocomposite phase change materials. Doctor of Philosophy Thesis, South China University of Technology, Guangzhou, China, 2010.Google Scholar
  26. 26.
    Humphries WR, Griggs EI. A design handbook for phase change thermal control and energy storage devices. Technical Report, 1074NASA Scientific and Technical Information Office, 1977.Google Scholar
  27. 27.
    Reid RC, Prausnitz JM, Poling BE. The properties of gases and liquids. New York: McGraw-Hill; 1987.Google Scholar
  28. 28.
    Voller VR, Cross M, Markatos NC. An enthalpy method for convection/diffusion phase change. Int J Numer Meth Eng. 1987;24:271–84.CrossRefGoogle Scholar
  29. 29.
    Brent AD, Voller VR, Reid KJ. Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal. Numer Heat Transf A Appl. 1988;13:297–318.Google Scholar
  30. 30.
    Assis E, Katsman L, Ziskind G, Letan R. Numerical and experimental study of melting in a spherical shell. Int J Heat Mass Transf. 2007;50:1790–804.CrossRefGoogle Scholar
  31. 31.
    Gui XH, Lin B, Guo YX, Yuan XG. Two-dimensional transient thermal analysis of PCM canister of a heat pipe receiver under microgravity. Appl Therm Eng. 2011;31:735–41.CrossRefGoogle Scholar
  32. 32.
    Guo CX, Zhang WJ. Numerical simulation and parametric study on new type of high temperature latent heat thermal energy storage system. Energy Convers Manag. 2008;49:919–27.CrossRefGoogle Scholar
  33. 33.
    Al-abidi AA, Mat SB, Sopian K, Sulaiman MY, Mohammed AT. CFD applications for latent heat thermal energy storage: a review. Renew Sustain Energy Rev. 2013;20:353–63.CrossRefGoogle Scholar
  34. 34.
    Lacroix M, Benmadda M. Numerical simulation of natural convection dominated melting and solidification from a finned vertical wall. Numer Heat Transf A Appl. 1997;31:71–86.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  1. 1.Department of Process Equipment and Control Engineering, School of Mechanical EngineeringXiangtan UniversityXiangtanPeople’s Republic of China

Personalised recommendations