Skip to main content
Log in

Properties of calcium carbonate precipitated in the presence of DPPC liposomes modified with the phospholipase A2

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Small unilamellar dipalmitoylphosphatidylcholine (DPPC) vesicles of average diameter 119 nm were used as a template for calcium carbonate precipitation. The precipitation was carried out from CaCl2 and Na2CO3 solutions at room temperature 25 °C and physiological temperature 37 °C. Moreover, liposomes modified with the enzyme phospholipase A2 (PLA2) were also used as an organic matrix. The influence of liposomes on the precipitation of calcium carbonate has been investigated using scanning electron microscopy and X-ray diffraction measurements. The particles surface modification was evidenced using zeta potential measurements and thermogravimetric analysis. The obtained results show that the effect of DPPC vesicles on the CaCO3 precipitation is concentration dependent. The stability of vaterite increases with the increase in liposomes content in the solutions. At the liposomes concentration equal to 100 mg L−1 a mixture of precipitated vaterite and calcite is observed. The temperature increase weakens this effect. Moreover, the enzyme PLA2 action has no significant influence on the calcium carbonate precipitation in the presence of DPPC liposomes at both investigated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hutchens SA, Benson RS, Evans BR, O’Neill HM, Rawn CJ. Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel. Biomaterials. 2006;27:4661–70.

    Article  CAS  Google Scholar 

  2. Ma Y, Qiao L, Feng Q. In-vitro study on calcium carbonate crystal growth mediated by organic matrix extracted from fresh water pearls. Mater Sci Eng, C. 2012;32:1963–70.

    Article  CAS  Google Scholar 

  3. Faatz M, Gröhn F, Wegner G. Amorphous calcium carbonate: synthesis and potential intermediate in biomineralization. Adv Mater. 2004;16:996–2000.

    Article  CAS  Google Scholar 

  4. Gopal K, Lu Z, de Villiers MM, Lvov Y. Composite phospholipid-calcium carbonate microparticles: influence of anionic phospholipids on the crystallization of calcium carbonate. J Phys Chem. 2006;110:2471–4.

    Article  CAS  Google Scholar 

  5. Liang P, Zhao Y, Shen Q, Wang D, Xu D. The effect of carboxymethyl chitosan on the precipitation of calcium carbonate. J Cryst Growth. 2004;261:571–6.

    Article  CAS  Google Scholar 

  6. Manoli F, Dalas E. Spontaneous precipitation of calcium carbonate in the presence of ethanol, isopropanol and diethylene glycol. J Cryst Growth. 2000;218:359–64.

    Article  CAS  Google Scholar 

  7. Park J-H, Oh S-G. Preparation of CaO as OLED getter material through control of crystal growth of CaCO3 by block copolymers in aqueous solution. Mater Res Bull. 2009;44:110–8.

    Article  CAS  Google Scholar 

  8. Szcześ A. Effects of DPPC/cholesterol liposomes on the properties of freshly precipitated calcium carbonate. Colloid Surf B. 2013;102:44–8.

    Article  CAS  Google Scholar 

  9. Gebauer D, Völkel A, Cölfen H. Stable prenucleation calcium carbonate clusters. Science. 2008;322:1819–22.

    Article  CAS  Google Scholar 

  10. Wang X, Sun H, Xia Y, Chen C, Xu H, Shan H, Lu JR. Lysozyme mediated calcium carbonate mineralization. J Colloid Interface Sci. 2009;332:96–103.

    Article  CAS  Google Scholar 

  11. Jiménez-Lopez C, Rodriguez-Navarro A, Dominguez-Vera JM, García-Ruiz JM. Influence of lysozyme on the precipitation of calcium carbonate: a kinetic and morphologic study. Geochim Cosmochim Acta. 2003;67:1667–76.

    Article  CAS  Google Scholar 

  12. Hood MA, Landfester K, Muñoz-Espi R. The role of residue acidity on the stabilization of vaterite by amino acids and oligopeptides. Cryst Growth Des. 2014;14:1077–85.

    Article  CAS  Google Scholar 

  13. Xue ZH, Hu BB, Jia XL, Wang HW, Du ZL. Effect of the interaction between bovine serum albumin Langmuir monolayer and calcite on the crystallization of CaCO3 nanoparticles. Mater Chem Phys. 2009;114:47–52.

    Article  CAS  Google Scholar 

  14. Shen Q, Wei H, Zhou Y, Huang Y, Yang H, Wang D, Xu D. Properties of amorphous calcium carbonate and the template action of vaterite spheres. J Phys Chem B. 2006;110:2994–3000.

    Article  CAS  Google Scholar 

  15. Tester CC, Brock RE, Wu C-H, Krejci MR, Wiegand S, Joester D. In vitro synthesis and stabilization of amorphous calcium carbonate (ACC) nanoparticles within liposomes. CrystEngComm. 2011;13:3975–8.

    Article  CAS  Google Scholar 

  16. Wan P, Zhao Y, Tong H, Yang Z, Zhu Z, Shen X, Hu J. The inducing effect of lecithin liposome organic template on the nucleation and crystal growth of calcium carbonate. J Mater Sci Eng C. 2009;29:222–7.

    Article  CAS  Google Scholar 

  17. Fukui Y, Fujimoto K. Control in mineralization by the polysaccharide-coated liposome via the counter-diffusion of ions. Chem Mater. 2011;23:4701–8.

    Article  CAS  Google Scholar 

  18. Heywood BR, Eanes ED. An ultrastructural study of the effects of acidic phospholipid substitutions on calcium phosphate precipitation in anionic liposomes. Calcif Tissue Int. 1992;50:149–56.

    Article  CAS  Google Scholar 

  19. Anderson HC, Garimella R, Tague SE. The role of matrix vesicles in growth plate development and biomineralization. Front Biosci. 2005;10:822–37.

    Article  CAS  Google Scholar 

  20. Skrtic D, Eanes ED. Membrane-mediated precipitation of calcium phosphate in model liposomes with matrix vesicle-like lipid composition. Bone Miner. 1992;16:109–19.

    Article  CAS  Google Scholar 

  21. Skrtic D, Eanes ED. Effect of different phospholipid-cholesterol membrane compositions on liposome-mediated formation of calcium phosphates. Calcif Tissue Int. 1992;50:253–60.

    Article  CAS  Google Scholar 

  22. Collier JH, Messersmith PB. Phospholipid strategies in biomineralization and biomaterials research. Annu Rev Mater Sci. 2001;31:237–63.

    Article  CAS  Google Scholar 

  23. Langer M, Kubica K. The electrostatics of lipid surfaces. Chem Phys Lipids. 1999;101:3–35.

    Article  Google Scholar 

  24. Goldberg M, Boskey AL. Progress in histochemistry cytochemistry. In: Lipids and biomineralizations, 31/2, Stuttgart G. Fisher Verlag; 1996. p. 1–190.

  25. Laye JP, Gill JH. Phospholipase A2 expression in tumours: a target for therapeutic intervention? Drug Discov Today. 2003;8:710–6.

    Article  CAS  Google Scholar 

  26. Cummings BS. Phospholipase A2 as targets for anti-cancer drugs. Biochem Pharmacol. 2007;74:949–59.

    Article  CAS  Google Scholar 

  27. Jurak M, Chibowski E. Zeta potential and surface free energy changes of solid-supported phospholipid (DPPC) layers caused by the enzyme phospholipase A2 (PLA2). Adsorption. 2009;15:211–9.

    Article  CAS  Google Scholar 

  28. Jurak M, Szcześ A, Chibowski E. Physicochemical properties of phospholipid model membranes hydrolyzed by phospholipase A2 (PLA2) in the presence of cholesterol at different temperatures. Appl Surf Sci. 2013;266:426–32.

    Article  CAS  Google Scholar 

  29. Szcześ A, Hołysz L. nfluence of DPPC layers and PLA2 on surface properties of silica particles. Surf Innov. 2015;3(1):3–9.

    Article  Google Scholar 

  30. Szcześ A. Phosphate mineral formation on the supported dipalmitoylphosphatidylcholine (DPPC) layers. Mater Sci Eng, C. 2014;40:373–81.

    Article  CAS  Google Scholar 

  31. Yeagle PL. The structure of biological membranes. 3rd ed. Cleveland: CRC Press; 2012.

    Google Scholar 

  32. Zaru M, Manca MZ, Fadda AM, Antimisiaris AG. Chitosan-coated liposomes for delivery to lungs by nebulization. Colloid Surf B. 2009;71:88–95.

    Article  CAS  Google Scholar 

  33. Rodriguez-Blanco JD, Shawn S, Benning LG. The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite. Nanoscale. 2011;3:265–71.

    Article  CAS  Google Scholar 

  34. Kralj D, Brečević L, Kontrec J. Vaterite growth and dissolution in aqueous solution III. Kinetics of transformation. J Cryst Growth. 1997;177:248–57.

    Article  CAS  Google Scholar 

  35. Wei H, Shen Q, Zhao Y, Wang D-J, Xu D-F. Influence of polyvinylpyrrolidone on the precipitation of calcium carbonate and on the transformation of vaterite to calcite. J Cryst Growth. 2003;250:516–24.

    Article  CAS  Google Scholar 

  36. Jones MN. The surface properties of phospholipid liposome systems and their characterization. Adv Colloid Interface Sci. 1995;54:93–128.

    Article  CAS  Google Scholar 

  37. Shapovalov VL. Interaction of DPPC monolayer at air–water interface with hydrophobic ions. Thin Solid Films. 1998;327–329:599–602.

    Article  Google Scholar 

  38. Ramos FJHTV, Mendes LC, Cestari SP. Organically modified concrete waste with oleic acid preparation and characterization. J Therm Anal Calorim. 2015;119:1895–904.

    Article  CAS  Google Scholar 

  39. Kędra-Królik K, Wszelak-Rylik M, Gierycz P. Thermal analysis of nanostructured calcite crystals covered with fatty acids. J Therm Anal Calorim. 2010;101:533–40.

    Article  CAS  Google Scholar 

  40. Galan I, Glasser FP, Andrade C. Calcium carbonate decomposition. J Therm Anal Calorim. 2013;111:1197–202.

    Article  CAS  Google Scholar 

  41. Majdana M, Pikusa S, Gajowiak A, Sternik D, Zięba E. Uranium sorption on bentonite modified by octadecyltrimethylammonium bromide. J Hazard Mater. 2010;184:662–70.

    Article  CAS  Google Scholar 

  42. Sternik D, Majdan M, Deryło-Marczewska A, Żukociński G, Gładysz-Płaska A, Gunko VM, Mikhalovsky SV. Influence of basic red 1 dye adsorption on thermal stability of Na-clinoptilolite and Na-bentonite. J Therm Anal Calorim. 2011;103(2):607–15.

    Article  CAS  Google Scholar 

  43. Troutier A-L, Véron L, Delair T, Pichot C, Ladavière C. New insights into self-organization of a model lipid mixture and quantification of its adsorption on spherical polymer particles. Langmuir. 2005;21:9901–10.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Szcześ.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szcześ, A., Sternik, D. Properties of calcium carbonate precipitated in the presence of DPPC liposomes modified with the phospholipase A2 . J Therm Anal Calorim 123, 2357–2365 (2016). https://doi.org/10.1007/s10973-015-4958-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4958-5

Keywords

Navigation