Journal of Thermal Analysis and Calorimetry

, Volume 123, Issue 3, pp 2069–2079 | Cite as

Synthesis, characterization and thermal behavior of copper(II) complexes with pyridoxal thiosemi (PLTSC)- and S-methylisothiosemicarbazone (PLITSC)

  • Ljiljana S. Vojinović-Ješić
  • Marko V. Rodić
  • Berta Barta Holló
  • Sonja A. Ivković
  • Vukadin M. Leovac
  • Katalin Mészáros Szécsényi


The syntheses of complexes of Cu(II) with biological active ligand, pyridoxal thiosemicarbazone (PLTSC) and its derivative, pyridoxal S-methylisothiosemicarbazone, are described. All coordination compounds were characterized by elemental analysis, molar conductivity and infrared spectra. The crystal and molecular structure of complexes [{Cu(μ-PLTSC)(H2O)}2](SO4)2·6H2O (2) and [{Cu(μ-PLTSC)(H2O)}2](SO4)2·2H2O (2a) is determined by single-crystal X-ray crystallography, too. The thermal decomposition of all the ligands and complexes was determined by simultaneous TG/DSC measurements. The decomposition mechanisms were compared and analyzed from the aspects of the relationships between the structures of the compounds and their thermal decomposition pattern.


Pyridoxal thiosemicarbazone Pyridoxal S-methylisothiosemicarbazone Structure Thermal stability Thermal decomposition 



The authors thank the Ministry of Education, Science and Technological Development of the Republic of Serbia for financial support (Project No. ON172014) and the Secretariat for Science and Technological Development (Autonomous Province of Vojvodina, Republic of Serbia).

Supplementary material

10973_2015_4891_MOESM1_ESM.cif (216 kb)
Supplementary material 1 (CIF 215 kb)
10973_2015_4891_MOESM2_ESM.pdf (178 kb)
Supplementary material 2 (PDF 178 kb)
10973_2015_4891_MOESM3_ESM.cif (29 kb)
Supplementary material 3 (CIF 29 kb)
10973_2015_4891_MOESM4_ESM.pdf (153 kb)
Supplementary material 4 (PDF 152 kb)
10973_2015_4891_MOESM5_ESM.pdf (247 kb)
Supplementary material 5 (PDF 246 kb)


  1. 1.
    Zayed EM, Zayed MA, Hindy AMM. Thermal and spectroscopic investigation of novel Schiff base, its metal complexes, and their biological activities. J Therm Anal Calorim. 2014;116:391–400.CrossRefGoogle Scholar
  2. 2.
    Udugala-Ganehenege MY, Liu Y, Forsyth C, Bond AM, Zhang J. Synthesis, characterization, crystal structure, electrochemical properties and electrocatalytic activity of an unexpected nickel(II) Schiff base complex derived from bis(acetylacetonato)nickel(II), acetone and ethylenediamine. Transit Met Chem. 2014;39:883–91.CrossRefGoogle Scholar
  3. 3.
    Ambrozini B, Dockal ER, Cavalheiro ETG. Thermal behavior of tetradentate Schiff base chromium(III) complexes. J Therm Anal Calorim. 2014;115:979–86.CrossRefGoogle Scholar
  4. 4.
    Liu M-L, Dou J-M, Li D-Ch, Wang D-Q, Cui J-Zh. Synthesis, structural characterization and thermal properties of three copper(II) complexes based on aryl hydrazide ligands. Transit Met Chem. 2012;37:117–24.CrossRefGoogle Scholar
  5. 5.
    Rolim LA, dos Santos FCM, Chaves LL, Gonçalves MLCM, Freitas-Neto JL, da Silva do Nascimento AL, Soares-Sobrinho JL, de Albuquerque MM, do Carmo Alves de Lima M, Rolim-Neto PJ. Preformulation study of ivermectin raw material. J Therm Anal Calorim. 2015;120:807–16.Google Scholar
  6. 6.
    Medina DAV, Ferreira APG, Cavalheiro ETG. Thermal investigation on polymorphism in sodium saccharine. J Therm Anal Calorim. 2014;117:361–67.Google Scholar
  7. 7.
    De Mendonc CMS, De Barros Lima IP, Aragăo CFS, Gomes APB. Thermal compatibility between hydroquinone and retinoic acid in pharmaceutical formulations. J Therm Anal Calorim. 2014;115:2277–85.Google Scholar
  8. 8.
    Holló B, Rodić MV, Bera O, Jovičić M, Leovac VM, Tomić ZD, Mészáros Szécsényi K. Cation- and/or anion-directed reaction routes. Could the desolvation pattern of isostructural coordination compounds be related to their molecular structure? Struct Chem. 2013;24:2193–201.CrossRefGoogle Scholar
  9. 9.
    Casas JS, Couce MD, Sordo J. Coordination chemistry of vitamin B6 and derivatives: a structural overview. J Coord Chem Rev. 2012;256:3036–62.CrossRefGoogle Scholar
  10. 10.
    Leovac VM, Jevtović VS, Jovanović LS, Bogdanović GA. Metal complexes with Schiff-base ligands—pyridoxal and semicarbazide-based derivatives. J Serb Chem Soc. 2005;70:393–422.CrossRefGoogle Scholar
  11. 11.
    Ferrari Belicchi M, Fava Gasparri G, Leporati E, Pelizzi C, Tarasconi P, Tosi G. Thiosemicarbazones as co-ordinating agents. Solution chemistry and X-ray structure of pyridoxal thiosemicarbazone trihydrate and spectroscopic properties of its metal complexes. J Chem Soc Dalton Trans. 1986;2455–61. doi: 10.1039/DT9860002455.
  12. 12.
    Agilent Technologies. CrysAlisPro Software system. Oxford: Agilent Technologies UK Ltd.; 2013.Google Scholar
  13. 13.
    Burla MC, Camalli M, Carrozzini B, Cascarano GL, Giacovazzo C, Polidori G, Spagna R. SIR2002: the program. J Appl Crystallogr. 2003;36:1103.CrossRefGoogle Scholar
  14. 14.
    Sheldrick GM. A short history of SHELX. Acta Crystallogr Sect A. 2008;64:112–22.CrossRefGoogle Scholar
  15. 15.
    Farrugia LJ. WinGX and ORTEP for Windows: an update. J Appl Crystallogr. 2012;45:849–54.CrossRefGoogle Scholar
  16. 16.
    Hübschle CB, Sheldrick GM, Dittrich B. ShelXle: a Qt graphical user interface for SHELXL. J Appl Crystallogr. 2011;44:1281–4.CrossRefGoogle Scholar
  17. 17.
    Spek AL. Structure validation in chemical crystallography. Acta Crystallogr Sect D. 2006;65:148–55.CrossRefGoogle Scholar
  18. 18.
    Belicchi Ferrari M, Fava Gaspari G, Pelizzi C, Pelosi G, Tarasconi P. Synthetic, spectroscopic and X-ray crystallographic studies on copper(II) complexes with pyruvic acid and pyridoxal thiosemicarbazones. Inorg Chim Acta. 1998;269:297–301.CrossRefGoogle Scholar
  19. 19.
    Geary WJ. The use of conductivity measurements in organic solvents for the characterization of coordination compounds. Coord Chem Rev. 1971;7:81–122.CrossRefGoogle Scholar
  20. 20.
    Lobana TS, Sharma R, Bawa G, Khanna S. Bonding and structure trends of thiosemicarbazone derivatives of metals—an overview. Coord Chem Rev. 2009;253:977–1055.CrossRefGoogle Scholar
  21. 21.
    Yemeli Tido EW, Vertelman EJM, Meetsma A, van Koningsbruggen PJ. Crystal structure and magnetic behaviour of a five-coordinate iron(III) complex of pyridoxal-4-methylthiosemicarbazone. Inorg Chim Acta. 2007;360:3896–902.CrossRefGoogle Scholar
  22. 22.
    Maurya MR, Kumar A, Abid M, Azam A. Dioxovanadium(V) and μ-oxo bis[oxovanadium(V)] complexes containing thiosemicarbazone based ONS donor set and their antiamoebic activity. Inorg Chim Acta. 2006;359:2439–47.CrossRefGoogle Scholar
  23. 23.
    Mohan M, Madhuranath PH, Kumar A, Kumar M, Jha NK. Magnetic and spectroscopic characterization of the high-spin (6A1) ⇄ low-spin (2T2) transition in an iron(III) complex of pyridoxal thiosemicarbazone. Inorg Chem. 1989;28:96–9.CrossRefGoogle Scholar
  24. 24.
    Takjoo R, Akbari A, Ahmadi M, Rudbari HA, Bruno G. Synthesis, spectroscopy, DFT and crystal structure investigations of 3-methoxy-2-hydroxybenzaldehyde S-thylisothiosemicarbazone and its Ni(II) and Mo(VI) complexes. Polyhedron. 2013;55:225–32.CrossRefGoogle Scholar
  25. 25.
    Kalaivani P, Prabhakaran R, Ramachandran E, Dallemer F, Paramaguru G, Renganathan R, Poornima P, Vijaya Padma V, Natarajan K. Influence of terminal substitution on structural, DNA, protein binding, anticancer and antibacterial activities of palladium(II) complexes containing 3-methoxy salicylaldehyde-4(N) substituted thiosemicarbazones. Dalton Trans. 2012;41:2486–99.CrossRefGoogle Scholar
  26. 26.
    Lalović MM, Leovac VM, Vojinović-Ješić LS, Rodić MV, Jovanović LS, Češljević VI. Dioxidovanadium(V) complexes with pyridoxalaminoguanidinederivative: synthesis and spectral and structural characterization. J Serb Chem Soc. 2013;78:1161–70.CrossRefGoogle Scholar
  27. 27.
    Nakamoto K. Infrared and raman spectra of inorganic and coordination compounds Part B. New Jersey: Wiley Hoboken; 2009.Google Scholar
  28. 28.
    Abram U, Ortner K, Gust R, Sommer K. Gold complexes with thiosemicarbazones: reactions of bi- and tridentate thiosemicarbazones with dichloro[2-(dimethylaminomethyl)phenyl-C 1,N]gold(III), [Au(damp-C 1,N)Cl2]. J Chem Soc Dalton Trans. 2000;735–44.Google Scholar
  29. 29.
    Casas JS, Castellano EE, Rodriguez-Arguelles MC, Sanchez A, Sordo J, Zukerman-Schpector J. Pyridoxal thiosemicarbazonate monohydrate of dimethylthallium(III): X-ray structure and spectroscopic properties. Inorg Chim Acta. 1997;260:183–8.CrossRefGoogle Scholar
  30. 30.
    Belicchi Ferrari M, Bisceglie F, Pelosi G, Tarasconi P, Albertini R, Dall’Aglio PP, Pinelli S, Bergamo A, Sava G. Synthesis, characterization and biological activity of copper complexes with pyridoxal thiosemicarbazone derivatives. X-ray crystal structure of three dimeric complexes. J Inorg Biochem. 2004;98:301–12.CrossRefGoogle Scholar
  31. 31.
    Belicchi Ferrari M, Fava GG, Tarasconi P, Albertini R, Pinelli S, Starcich R. Synthesis, spectroscopic and structural characterization, and biological activity of aquachloro(pyridoxal thiosemicarbazone) copper(II) chloride. J Inorg Biochem. 1994;53:13–25.CrossRefGoogle Scholar
  32. 32.
    Belicchi Ferrari M, Bisceglie F, Casoli C, Durot S, Morgenstern-Badarau I, Pelosi G, Pilotti E, Pinelli S, Tarasconi P. Copper(II) and cobalt(III) pyridoxal thiosemicarbazone complexes with nitroprusside as counterion: syntheses, electronic properties, and antileukemic activity. J Med Chem. 2005;48:1671–5.CrossRefGoogle Scholar
  33. 33.
    Leovac VM, Marković S, Divjaković V, Mészáros Szécsényi K, Joksović MD, Leban I. Structural and DFT studies on molecular structure of Ni(II) chloride complex with pyridoxal semicarbazone (PLSC). Unusual coordination mode of PLSC. Acta Chim Slov. 2008;55:850–60.Google Scholar
  34. 34.
    Lalović MM, Vojinović-Ješić LS, Jovanović LS, Leovac VM, Češljević VI, Divjaković V. Synthesis, characterization and crystal structure of square-pyramidal copper(II) complexes with pyridoxylidene aminoguanidine. Inorg Chim Acta. 2012;388:157–62.CrossRefGoogle Scholar
  35. 35.
    Ivković SA, Vojinović-Ješić LS, Leovac VM, Rodić MV, Novaković SB, Bogdanović GA. Transition metal complexes with thiosemicarbazide-based ligands. Part 61. Comparative analysis of structural properties of the pyridoxal thiosemicarbazone ligands. Crystal structure of PLTSC·HCl·2H2O and its complex [Fe(PLTSC)Cl2(H2O)]Cl. Struct Chem. 2014;. doi: 10.1007/s11224-014-0491-6.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Ljiljana S. Vojinović-Ješić
    • 1
  • Marko V. Rodić
    • 1
  • Berta Barta Holló
    • 1
  • Sonja A. Ivković
    • 2
  • Vukadin M. Leovac
    • 1
  • Katalin Mészáros Szécsényi
    • 1
  1. 1.Faculty of SciencesUniversity of Novi SadNovi SadSerbia
  2. 2.Faculty of Environmental ProtectionUniversity EDUCONSSremska KamenicaSerbia

Personalised recommendations