Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 123, Issue 2, pp 1735–1742 | Cite as

Thermal treatment of Indonesian lignite washery tailing

Part 2. Kinetic analysis
  • Dandan Chen
  • Xuguang Jiang
  • Shuai Lv
  • Zengyi Ma
  • Jianhua Yan
  • Xuehai Yu
  • Haiyan Liao
  • Hua Zhao
Article

Abstract

Kinetic analysis of Indonesian lignite washery tailings (LWT) was studied in this paper. Two methods were compared to evaluate the activation energy E of LWT, i.e., iso-conversional methods and model-based method. The Flynn–Wall–Ozawa method and the Kissinger–Akahira–Sunose method were chosen to represent the iso-conversional method. The Coats–Redfern method was chosen as the model-based method. Furthermore, a complementary method of iso-conversional and model-based was also used to determine the kinetic mechanism of LWT. The results provide useful information for designing a combustion or pyrolytic system using LWT as feedstock.

Keywords

LWT Kinetics Model based Iso-conversional Complementary method 

Notes

Acknowledgements

Financial supports are acknowledged by: the National Basic Research Program of China (Grant 2011CB201500), the National High Technology Research and Development Program (863 Program) of China (Grant 2012AA063505), the Special Fund for National Environmental Protection Public Welfare Program (Grant 201209023-4), and the Program of Introducing Talents of Discipline to University (Grant B08026).

References

  1. 1.
    Anca-Couce A, Berger A, Zobel N. How to determine consistent biomass pyrolysis kinetics in a parallel reaction scheme. Fuel. 2014;123:230–40.CrossRefGoogle Scholar
  2. 2.
    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.CrossRefGoogle Scholar
  3. 3.
    Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci, Part B: Polym Lett. 1966;4:323–8.CrossRefGoogle Scholar
  4. 4.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  5. 5.
    Coats AW, Redfern JP. kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.CrossRefGoogle Scholar
  6. 6.
    Coats AW, Redfern JP. kinetic parameters from thermogravimetric data.2. J Polym Sci, Part B: Polym Lett. 1965;3:917–20.CrossRefGoogle Scholar
  7. 7.
    Khawam A, Flanagan DR. Complementary use of model-free and modelistic methods in the analysis of solid-state kinetics. J Phys Chem B. 2005;109:10073–80.CrossRefGoogle Scholar
  8. 8.
    Doyle C. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5:285–92.CrossRefGoogle Scholar
  9. 9.
    Doyle C. Estimating isothermal life from thermogravimetric data. J Appl Polym Sci. 1962;6:639–42.CrossRefGoogle Scholar
  10. 10.
    Flynn J. The isoconversional method for determination of energy of activation at constant heating rates. J Therm Anal Calorim. 1983;27:95–102.CrossRefGoogle Scholar
  11. 11.
    Flynn JH. The ‘temperature integral’—its use and abuse. Thermochim Acta. 1997;300:83–92.CrossRefGoogle Scholar
  12. 12.
    Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Nat Bur Stand. 1966;70:487–523.CrossRefGoogle Scholar
  13. 13.
    Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal Calorim. 1970;2:301–24.CrossRefGoogle Scholar
  14. 14.
    Ozawa T. Estimation of activation energy by isoconversion methods. Thermochim Acta. 1992;203:159–65.CrossRefGoogle Scholar
  15. 15.
    Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol (Sci Technol). 1971;16:22–31.Google Scholar
  16. 16.
    Gotor FJ, Criado JM, Malek J, Koga N. Kinetic analysis of solid-state reactions: the universality of master plots for analyzing isothermal and nonisothermal experiments. J Phys Chem A. 2000;104:10777–82.CrossRefGoogle Scholar
  17. 17.
    H-m Xiao, X-q Ma, Z-y Lai. Isoconversional kinetic analysis of co-combustion of sewage sludge with straw and coal. Appl Energy. 2009;86:1741–5.CrossRefGoogle Scholar
  18. 18.
    Cui C, Xu F, Sun B. Comparison of different methods for analyzing the activation energy of oil shale combustion. Energy Eng (Chinese). 2006;6:1–4.Google Scholar
  19. 19.
    Wang CA, Liu YH, Zhang XM, Che DF. A study on coal properties and combustion characteristics of blended coals in Northwestern China. Energy Fuels. 2011;25:3634–45.CrossRefGoogle Scholar
  20. 20.
    Agrawal A, Chakraborty S. A kinetic study of pyrolysis and combustion of microalgae Chlorella vulgaris using thermo-gravimetric analysis. Bioresour Technol. 2013;128:72–80.CrossRefGoogle Scholar
  21. 21.
    Senneca O. Kinetics of pyrolysis, combustion and gasification of three biomass fuels. Fuel Process Technol. 2007;88:87–97.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Dandan Chen
    • 1
  • Xuguang Jiang
    • 1
  • Shuai Lv
    • 1
  • Zengyi Ma
    • 1
  • Jianhua Yan
    • 1
  • Xuehai Yu
    • 2
  • Haiyan Liao
    • 2
  • Hua Zhao
    • 2
  1. 1.State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhouChina
  2. 2.Electric Power Research Institute of Shenhua GuohuaBeijingChina

Personalised recommendations