Journal of Thermal Analysis and Calorimetry

, Volume 123, Issue 1, pp 81–89 | Cite as

Experimental investigation of the rheological behavior and viscosity of decorated multi-walled carbon nanotubes with TiO2 nanoparticles/water nanofluids

  • Sedigheh Abbasi
  • Seyed Mojtaba Zebarjad
  • Seyed Hossein Noie Baghban
  • Abbas Youssefi
  • Mehri-Saddat Ekrami-Kakhki


The effects of temperature and concentration on the flow behavior and viscosity of nanofluids containing TiO2 nanoparticles, pristine MWCNTs, oxidized MWCNTs and decorated MWCNTs with TiO2 nanoparticles are experimentally investigated. The results of rheological characteristics of nanofluids revealed that nanofluid of TiO2 nanoparticle and MWCNT–TiO2 exhibits shear thickening or dilatant behavior. In contrast, nanofluids containing pristine and oxidized MWCNTs depict the shear thinning or pseudoplastic behavior. Also results demonstrated that the rheological characteristics of nanofluids are functions of temperature and concentration, whereas the viscosity of all prepared nanofluids decreases with increasing the temperature and decreasing the concentration. In addition, the results show that the oxidation of MWCNTs in nitric acid leads to the reduction in viscosity. The rheological behavior of decorated MWCNTs illustrates that viscosity decreases by increasing the attached TiO2 nanoparticles. TEM results show that TiO2 nanoparticles successfully attached to the outer surface of oxidized MWCNTs.


MWCNT TiO2 nanoparticles Flow behavior Viscosity 



The authors gratefully acknowledge the help given by Mrs. R. Pesyan from Central Research Laboratory of Ferdowsi University of Mashhad and Mrs. Z. Zaferani from Research Institute of Food Science and Technology (RIFST).


  1. 1.
    Chen L, Xie H. Silicon oil based multiwalled carbon nanotubes nanofluid with optimized thermal conductivity enhancement. Colloids Surf A Physicochem Eng Asp. 2009;352:136–40.CrossRefGoogle Scholar
  2. 2.
    Heris SZ, Razbani MA, Estellé P, Mahian O. Rheological behavior of zinc-oxide nanolubricants. J Dispers Sci Technol. 2015;36:1073–79.Google Scholar
  3. 3.
    Abbasi S, Zebarjad SM, Baghban SHN, Youssefi A. Statistical analysis of thermal conductivity of nanofluid containing decorated multi-walled carbon nanotubes with TiO2 nanoparticles. Bull Mater Sci. 2014;37:1439–45.CrossRefGoogle Scholar
  4. 4.
    Abbasi S, Zebarjad SM, Baghban SHN, Youssefi A. Synthesis of TiO2 nanoparticles and decorated multi-walled carbon nanotubes with various content of rutile titania. Synth React Inorg Metal-Org Nano-Metal Chem. 2015;45:1539-48.Google Scholar
  5. 5.
    Barbés B, Páramo R, Blanco E, Pastoriza-Gallego MJ, Piñeiro MM, Legido JL, Casanova C. Thermal conductivity and specific heat capacity measurements of Al2O3 nanofluids. J Therm Anal Calorim. 2013;111:1615–25.CrossRefGoogle Scholar
  6. 6.
    Moreira LM, Carvalho EA, Bell MJV, Anjos V, Sant’Ana AC, Alves APP, Fragneaud B, Sena LA, Archanjo BS, Achete CA. Thermo-optical properties of silver and gold nanofluids. J Therm Anal Calorim. 2013;114:557–64.CrossRefGoogle Scholar
  7. 7.
    Barbés B, Páramo R, Blanco E, Casanova C. Thermal conductivity and specific heat capacity measurements of CuO nanofluids. J Therm Anal Calorim. 2014;115:1883–91.CrossRefGoogle Scholar
  8. 8.
    Esfe MH, Saedodin S, Mahian O, Wongwises S. Thermal conductivity of Al2O3/water nanofluids. J Therm Anal Calorim. 2014;117:675–81.CrossRefGoogle Scholar
  9. 9.
    Hosseini SM, Moghadassi AR, Henneke D, Elkamel A. The thermal conductivities enhancement of mono ethylene glycol and paraffin fluids by adding b-SiC nanoparticles. J Therm Anal Calorim. 2010;101:113–8.CrossRefGoogle Scholar
  10. 10.
    Mahian O, Kianifar A, Kalogirou SA, Pop I, Wongwises SA. Review of the applications of nanofluids in solar energy. Int J Heat Mass Transf. 2013;57:582–94.CrossRefGoogle Scholar
  11. 11.
    Yiamsawas T, Mahian O, Dalkilic AS, Kaewnai S, Wongwises S. Experimental studies on the viscosity of TiO2 and Al2O3 nanoparticles suspended in a mixture of ethylene glycol and water for high temperature applications. Appl Energy. 2013;111:40–5.CrossRefGoogle Scholar
  12. 12.
    Mahian O, Mahmud S, Heris SZ. Effect of uncertainties in physical properties on entropy generation between two rotating cylinders with nanofluids. J Heat Transf ASME. 2012;134:101704.CrossRefGoogle Scholar
  13. 13.
    Yiamsawas T, Dalkilic AS, Mahian O, Wongwises S. Measurement and correlation of the viscosity of water-based Al2O3 and TiO2 nanofluids in high temperatures and comparisons with literature reports. J Dispers Sci Technol. 2013;34:1697–703.CrossRefGoogle Scholar
  14. 14.
    Wang XQ, Mujumdar AS. Heat transfer characteristics of nanofluids: a review. Int J Therm Sci. 2007;46:1–19.CrossRefGoogle Scholar
  15. 15.
    Aladag B, Halelfadl S, Doner N, Maré T, Duret S, Estellé P. Experimental investigations of the viscosity of nanofluids at low temperatures. Appl Energy. 2012;97:876–80.CrossRefGoogle Scholar
  16. 16.
    Bobbo S, Fedele L, Benetti A, Colla L, Fabrizio M, Pagura C, Barison S. Viscosity of water based SWCNH and TiO2 nanofluids. Exp Therm Fluid Sci. 2012;36:65–71.CrossRefGoogle Scholar
  17. 17.
    Kole M, Dey TK. Thermal conductivity and viscosity of Al2O3 nanofluid based on car engine coolant. J Phys D Appl Phys. 2010;4:315501.CrossRefGoogle Scholar
  18. 18.
    Naik MT, Janardhana GR, Reddy KVK, Reddy BS. Experimental investigation into rheological property of copper oxide nanoparticles suspended in propylene glycol–water based fluids. ARPN J Eng Appl Sci. 2010;5:29–34.Google Scholar
  19. 19.
    Tseng WJ, Lin KC. Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions. Mater Sci Eng A. 2003;355:186–92.CrossRefGoogle Scholar
  20. 20.
    Ferrouillat S, Bontemps A, Ribeiro JP, Gruss JA, Soriano O. Hydraulic and heat transfer study of SiO2/water nanofluids in horizontal tubes with imposed wall temperature boundary conditions. Int J Heat Fluid Flow. 2011;32:424–39.CrossRefGoogle Scholar
  21. 21.
    Phuoc TX, Massoudi M, Chen RH. Viscosity and thermal conductivity of nanofluids containing multi-walled carbon nanotubes stabilized by chitosan. Int J Therm Sci. 2011;50:12–8.CrossRefGoogle Scholar
  22. 22.
    Hojjat M, Etemad SG, Bagheri R, Thibault J. Rheological characteristics of non-Newtonian nanofluids: experimental investigation. Int Commun Heat Mass Transf. 2011;38:144–8.CrossRefGoogle Scholar
  23. 23.
    Chevalier J, Tillement O, Ayela F. Rheological properties of nanofluids flowing through microchannels. Appl Phys Lett. 2007;91:103–233.CrossRefGoogle Scholar
  24. 24.
    Zupancic A, Zumer M, Lapasia R, Torriano G. Rheological properties of TiO2/BaSO4 suspensions in oscillatory and steady shear flow. Prog Org Coat. 1997;30:79–88.CrossRefGoogle Scholar
  25. 25.
    Prasher R, Song D, Wang J, Phelan P. Measurements of nanofluid viscosity and its implications for thermal applications. Appl Phys Lett. 2006;89:133108.CrossRefGoogle Scholar
  26. 26.
    Namburu PK, Kulkarni DP, Misra D, Das DK. Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture. Exp Therm Fluid Sci. 2007;32:397–402.CrossRefGoogle Scholar
  27. 27.
    Lu K. Rheological behavior of carbon nanotube-alumina nanoparticle dispersion systems. Powder Technol. 2007;177:154–61.CrossRefGoogle Scholar
  28. 28.
    Garg P, Alvarado JL, Marsh C, Carlson TA, Kessler DA, Annamalai K. An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids. Int J Heat Mass Transf. 2009;52:5090–101.CrossRefGoogle Scholar
  29. 29.
    Chen H, Ding Y, Lapkin A, Fan X. Rheological behaviour of ethylene glycol–titanate nanotube nanofluids. J Nanopart Res. 2009;11:1513–20.CrossRefGoogle Scholar
  30. 30.
    Fedele L, Colla L, Bobbo S. Viscosity and thermal conductivity measurements of water-based nanofluids containing titanium oxide nanoparticles. Int J Refrig. 2012;35:359–66.CrossRefGoogle Scholar
  31. 31.
    Chen HS, Ding YL, Tan CQ. Rheological behaviour of nanofluids. New J Phys. 2007;9:1–25.CrossRefGoogle Scholar
  32. 32.
    Metzner AR, Whitlock M. Flow behavior of concentrated (dilatant) suspensions. Trans Soc Rheol. 1958;2:239–54.CrossRefGoogle Scholar
  33. 33.
    Paritosh G, Jorge LA, Marsh C, Carlson TA, Kessler DA, Annamalai K. An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids. Int J Heat Mass Transf. 2009;52:5090–101.CrossRefGoogle Scholar
  34. 34.
    Meng Z, Wua D, Wanga L, Zhua H, Li Q. Carbon nanotube glycol nanofluids: photo-thermal properties, thermal conductivities and rheological behavior. Particuology. 2012;10:614–8.CrossRefGoogle Scholar
  35. 35.
    Amiri A, Shanbedi M, Eshghi H, Heris SZ, Baniadam M. Highly dispersed multiwalled carbon nanotubes decorated with Ag nanoparticles in water and experimental investigation of the thermophysical properties. J Phys Chem C. 2012;116:3369–75.CrossRefGoogle Scholar
  36. 36.
    Abbasi S, Zebarjad SM, Baghban SHN. Decorating and filling of multi-walled carbon nanotubes with TiO2 nanoparticles via wet chemical method. Engineering. 2013;5:207–12.CrossRefGoogle Scholar
  37. 37.
    Alphonse P, Bleta R, Soules R. Effect of PEG on rheology and stability of nanocrystalline titania hydrosols. J Colloid Interface Sci. 2009;337:81–7.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Sedigheh Abbasi
    • 1
    • 2
  • Seyed Mojtaba Zebarjad
    • 3
  • Seyed Hossein Noie Baghban
    • 1
  • Abbas Youssefi
    • 4
  • Mehri-Saddat Ekrami-Kakhki
    • 2
  1. 1.Department of Chemical Engineering, Faculty of EngineeringFerdowsi University of MashhadMashhadIran
  2. 2.Esfarayen University of TechnologyEsfarayenIran
  3. 3.Department of Material Science and Engineering, Faculty of EngineeringShiraz UniversityShirazIran
  4. 4.Par-e-Tavous Research InstituteMashhadIran

Personalised recommendations