Journal of Thermal Analysis and Calorimetry

, Volume 123, Issue 1, pp 595–605 | Cite as

Synthesis, spectral characterization, thermal analysis and electrochemistry properties of Ni(II) complexes derived from azo dyes



Three new complexes of nickel(II) prepared from azo-containing salicylaldimine ligands with nickel(II) acetate. The prepared complexes were characterized by IR, UV–Vis, elemental analysis, fluorescence and 1H NMR spectroscopy. Thermal properties and decomposition possibilities of nickel(II) complexes are suggested. The interpretation of all thermal decomposition stages has been evaluated. Electronic structure of the complexes indicated that the absorption between 450 and 528 nm, which were the lowest energy transfers in the complexes, was attributed to the metal–ligand charge-transfer transitions. The redox behavior of nickel(II) complexes studied by cyclic voltammetry. All the synthesized complexes can serve as potential photoactive materials as indicated from their characteristic fluorescence properties.


Nickel(II) acetate Cyclic voltammetry Fluorescence Thermal properties Dinuclear 



The author would like to thank the Research Council of Payame Noor University for the financial support of this research.

Supplementary material

10973_2015_4859_MOESM1_ESM.doc (786 kb)
Supplementary material 1 (DOC 785 kb)


  1. 1.
    Nishihara H. Multi-mode molecular switching properties and functions of azo-conjugated metal complexes. Bull Chem Soc Jpn. 2004;77:407–28.CrossRefGoogle Scholar
  2. 2.
    Alemán C, Ishiki HM. Molecular structure and proton affinities of the 4 H-1-benzopyran-4-one molecule and its hydroxylated derivatives. J Org Chem. 1999;64:1768–9.CrossRefGoogle Scholar
  3. 3.
    Singh GR, Singh NK, Girdhar MP, Ishar S. A versatile route to 2-alkyl-/aryl-amino-3-formyl- and hetero-annelated-chromones, through a facile nucleophilic substitution at C2 in 2-(N-methylanilino)-3-formylchromones. Tetrahedron. 2002;58:2471–80.CrossRefGoogle Scholar
  4. 4.
    Thakur M, Deb MK. The use of 1-[pyridyl-(2)-azo]-naphthol-(2) in the presence of TX-100 and N,N′-diphenylbenzamidine for the spectrophotometric determination of copper in real samples. Talanta. 1999;9:561–9.CrossRefGoogle Scholar
  5. 5.
    Arabahmadi R, Amani S. A new fluoride ion colorimetric sensor based on azo–azomethine receptors. Supramol Chem. 2014;26:321–8.CrossRefGoogle Scholar
  6. 6.
    Arabahmadi R, Amani S. Synthesis and studies of selective chemosensors for anions and cations by azo-containing salicylaldimine-based receptors. J Coord Chem. 2013;6:218–26.CrossRefGoogle Scholar
  7. 7.
    Paschke R, Liebsch S, Tschierske C, Oakley MA, Sinn E. Synthesis and mesogenic properties of binuclear copper(II) complexes derived from salicylaldimine Schiff bases. Inorg Chem. 2003;42:8230–40.CrossRefGoogle Scholar
  8. 8.
    Joachim C, Gimzewski JK, Aviram A. Electronics using hybrid-molecular and mono-molecular devices. Nature. 2000;408:541–8.CrossRefGoogle Scholar
  9. 9.
    Khalaji AD, Nikookar M, Das D. Co(III), Ni(II), and Cu(II) complexes of bidentate N, O-donor Schiff base ligand derived from 4-methoxy-2-nitroaniline and salicylaldehyde. J Therm Anal Calorim. 2014;115:409–17.CrossRefGoogle Scholar
  10. 10.
    Patil SA, Unki SN, Badami P. Synthesis, characterization, biological and thermal behaviour of Co(II), Ni(II) and Cu(II) complexes with Schiff bases having coumarin moieties. J Therm Anal Calorim. 2013;111:1281–9.CrossRefGoogle Scholar
  11. 11.
    Alan I, Kriza A, Badea M, Stanica N, Olar R. Synthesis and characterization of Co(II), Ni(II), Zn(II) and Cd(II) complexes with 5-bromo-N,N′-bis-(salicylidene)-o-tolidine. J Therm Anal Calorim. 2013;111:483–90.CrossRefGoogle Scholar
  12. 12.
    Alan I, Kriza A, Olar R, Stanica N, Badea M. Spectral, magnetic and thermal characterization of new Co(II), Ni(II) and Cu(II) complexes with Schiff base 5-bromo-N,N′-bis-(salicylidene)-o-tolidine. J Therm Anal Calorim. 2013;111:1163–71.CrossRefGoogle Scholar
  13. 13.
    Montazerozohori M. Synthesis, spectroscopic and thermal studies of some Hg(II) and Cd(II) coordination compounds of N,N0-bis[(E)-3-(phenylprop)-2-enylidene] propanediamine. J Therm Anal Calorim. 2013;111:121–8.CrossRefGoogle Scholar
  14. 14.
    Oforka NC, Mkpenie VN. A new method of synthesis of azo Schiff base ligands with azo and azomethine donors: synthesis of N-4-methoxy-benzylidene-2-(3-hydroxyphenylazo)-5-hydroxy-aniline and its Nickel(II) complex. Chin J Chem. 2007;25:869–71.CrossRefGoogle Scholar
  15. 15.
    Badea M, Calu L, Chifiriuc MC, Bleotu C, Marin A, Ion S, et al. Thermal behaviour of some novel antimicrobials based on complexes with a Schiff base bearing 1,2,4-triazole pharmacophore. J Therm Anal Calorim. 2014;118:1145–57.CrossRefGoogle Scholar
  16. 16.
    Zayed EM, Zayed MA, Hindy AMM. Thermal and spectroscopic investigation of novel Schiff base, its metal complexes, and their biological activities. J Therm Anal Calorim. 2014;116:391–400.CrossRefGoogle Scholar
  17. 17.
    Koola J, Kochi JK. Nickel catalysis of olefin epoxidation. Inorg Chem. 1987;26:908–16.CrossRefGoogle Scholar
  18. 18.
    Querci C, Strologo S, Ricci M. Nickel (salen) catalysed chlorination of saturated hydrocarbons by sodium hypochlorite. Tetrahedron Lett. 1990;31:6577–80.CrossRefGoogle Scholar
  19. 19.
    Kinneary JF, Wagler TR, Burrows CJ. Alkene epoxidation using Ni(II) complexes of chiral cyclams. Tetrahedron Lett. 1988;29:877–80.CrossRefGoogle Scholar
  20. 20.
    Jozwiak WK, Mitros M, Kaluzna-Czaplinska J, Tosik R. Oxidative decomposition of Acid Brown 159 dye in aqueous solution by H2O2/Fe2+ and ozone with GC/MS analysis. Dyes Pigm. 2007;74:9–16.CrossRefGoogle Scholar
  21. 21.
    Arabahmadi R, Amani S. Synthesis, spectroscopy, thermal analysis, magnetic properties and biological activity studies of Cu(II) and Co(II) complexes with schiff base dye ligands. Molecules. 2012;17:6434–48.CrossRefGoogle Scholar
  22. 22.
    Mikuraya M, Sasak T, Anjiki A, Ikenoue S, Tokh T. Binuclear nickel(II) complexes of Schiff bases derived from salicylaldehydes and 1, n-diamino-n′-hydroxyalkanes (n, n′ = 3, 2; 4, 2; and 5, 3) having an endogenous alkoxo bridge. Bull Chem Soc Jpn. 1992;65:334–9.CrossRefGoogle Scholar
  23. 23.
    Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. 3rd ed. New York: Wiley Interscience; 1977. p. 296.Google Scholar
  24. 24.
    Ali SA, Soiman AA, Aboaly MM, Ramandan RM. Chromium, molybdenum and ruthenium complexes of 2-hydroxyacetophenone Schiff bases. J Coord Chem. 2002;55:1161–70.CrossRefGoogle Scholar
  25. 25.
    Akitsu T, Einaga Y. Synthesis, crystal structures and electronic properties of Schiff base nickel(II) complexes: towards solvatochromism induced by a photochromic solute. Polyhedron. 2005;24:1869–77.CrossRefGoogle Scholar
  26. 26.
    Pethe G, Yaul A, Aswar A. Synthetic, spectroscopic and thermal studies of some complexes of unsymmetrical Schiff base ligand. J Therm Anal Calorim. 2012;107:97–103.CrossRefGoogle Scholar
  27. 27.
    Shukla S, Mishra AP. Non-isothermal degradation-based solid state kinetics study of copper(II) Schiff base complex, at different heating rates. J Therm Anal Calorim. 2012;107:111–7.CrossRefGoogle Scholar
  28. 28.
    Lever ABP. Inorganic electronic spectroscopy. 2nd ed. New York: Elsevier; 1984.Google Scholar
  29. 29.
    Hudson SA, Maitlis PM. Calamitic metallomesogens: metal-containing liquid crystals with rodlike shapes. Chem Rev. 1993;93:861–5.CrossRefGoogle Scholar
  30. 30.
    Bhattacharyya S, Weakley TJR, Chaudhury M. Nickel(II) in an N 4S donor environment: an unprecedented alcoholysis reaction through the activation of a carbon–nitrogen single bond. Inorg Chem. 1999;38:633–8.CrossRefGoogle Scholar
  31. 31.
    Blake AB, Chipperfield JR, Hussain W, Paschke R, Sinn E. Effects of ligand substituents (F for H; OR for R) on mesogenic properties of M(Salen) derivatives (M = Cu, Ni, VO). New fluoro-substituted complexes and crystal structure of the mesogen Ni(5hexylSalen). Inorg Chem. 1995;34:1125–9.CrossRefGoogle Scholar
  32. 32.
    Paschke R, Balkow D, Baumeister U, Hartung H, Chipperfield TJR, Blake AB, Nelson PG, Gray GW. Di(5-substituted-salicylidene)ethylene diaminato-complexes (Part II). Mesomorphic properties of Di(5-alkylsalicylidene)ethylene diaminato Nickel(II) and Copper(II) complexes and an X-ray structure determination of Di(5-hexyloxy salicylidene)ethylenediaminato Nickel(II). Mol Cryst Liq Cryst. 1990;188:105–18.Google Scholar
  33. 33.
    Riley PE, Pecorano VL, Carrano CJ, Bonadies JA, Raymond KN. Inorg Chem. 1986;25:154–60.CrossRefGoogle Scholar
  34. 34.
    Bosnich B. An interpretation of the circular dichroism and electronic spectra of salicylaldimine complexes of square–coplanar diamagnetic Nickel(II). J Am Chem Soc. 1968;90:627–32.CrossRefGoogle Scholar
  35. 35.
    Shi Q, Cao R, Li X, Luo J, Hong M, Chen Z. Syntheses, structures, electrochemistry and magnetic properties of chain-like dicyanamide manganese(III) and iron(III) complexes with salen ligand. New J Chem. 2002;26:1397–401.CrossRefGoogle Scholar
  36. 36.
    Ramadan SH, Ghosh R, Lu TH, Ghosh BK. Chelating N,N′-(bis(pyridin-2-yl)alkylidene)propane-1,3-diamine pseudohalide copper(II) and cadmium(II) coordination compounds: synthesis, structure and luminescence properties of[M(bpap)(X)]ClO4 and [M(bpap)(X)2] [M = Cu, Cd; X = N3 , NCS]. Polyhedron. 2005;24:1525–35.CrossRefGoogle Scholar
  37. 37.
    Yu T, Zhang K, Zhao Y, Yang C, Zhang H, Qian L, Fan D, Dong W, Chen L, Qiu Y. Synthesis, crystal structure and photoluminescent properties of an aromatic bridged Schiff base ligand and its zinc complex. Inorg Chim Acta. 2008;361:233–40.CrossRefGoogle Scholar
  38. 38.
    Bose D, Banerjee J, SkH Rahaman, Mostafa G, Fun H-K, Bailey WRD, Zaworotko MJ, Ghosh BK. Polymeric end-to-end bibridged cadmium(II)thiocyanates containing monodentate and bidentate N-donor organic blockers: supramolecular synthons based on π–π and/or C–H···π interactions. Polyhedron. 2004;23:2045–53.CrossRefGoogle Scholar
  39. 39.
    Yamgar BA, Sawant VA, Sawant SK, Chavan SS. Copper(II) complexes of thiazolylazo dye with triphenylphosphine and N3 or NCS as coligands: synthesis, spectral characterization, electrochemistry and luminescence properties. J Coord Chem. 2009;62:2367–74.CrossRefGoogle Scholar
  40. 40.
    Reddinger JL, Reynolds JR. Tunable redox and optical properties using transition metal-complexed polythiophenes. Macromolecules. 1997;30:673–5.CrossRefGoogle Scholar
  41. 41.
    Li S-Y, Chen C-J, Lo P-Y, Sheu H-S, Lee G-H, Lai CK. H-bonded metallomesogens derived from salicyladiminates. Tetrahedron. 2010;66:6101–12.CrossRefGoogle Scholar
  42. 42.
    Anthonysamy A, Balasubramanian S. Synthesis, spectral, thermal and electrochemical studies of nickel(II) complexes with N2O2 donor ligands. Inorg Chem Commun. 2005;8:908–11.CrossRefGoogle Scholar
  43. 43.
    Nihei M, Kurihara M, Mizutani J, Nishihara H. Synthesis of azo-conjugated metalladithiolenes and their photo-and proton-responsive isomerization reactions. J Am Chem Soc. 2003;125:2964–73.CrossRefGoogle Scholar
  44. 44.
    Dabrowiak JC, Fisher DP, McElroy FC, Macero DJ. Electrochemical investigations of some azo macrocyclic ligands and their nickel(II) complexes. Inorg Chem. 1979;18:2304–7.CrossRefGoogle Scholar
  45. 45.
    Zayed MA, Hawash MF, Fahmey MA, El-Gizouli AMA. Investigation of ibuprofen drug using mass spectrometry, thermal analyses and semi-empirical molecular orbital calculation. J Therm Anal Calorim. 2012;108:315–22.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  1. 1.Chemistry DepartmentPayame Noor University (PNU)TehranIran

Personalised recommendations