Journal of Thermal Analysis and Calorimetry

, Volume 123, Issue 1, pp 75–80 | Cite as

Design and study of ADC/BCN/metal oxide gas-generating agents

  • Hongtao Yang
  • Tiantian Xu
  • Xuqiang Zhu
  • Xiangyu Li
  • Yanchun Li


Characterized with low burning temperature and low concentration of toxic gases, the azodicarbonamide (ADC), basic cupric nitrate (BCN) and 10 % metal oxide (CuO, ZnO, MnO2, Fe2O3) gas-generating agents have been investigated. The thermal analysis results show that the thermal decomposition process of ADC/BCN/metal oxide is similar to that of ADC/BCN, and the addition of metal oxides makes the initial decomposition temperature decrease. Among the ADC/BCN/metal oxide mixtures that were examined, ADC/BCN/CuO mixture exhibits a better burning performance. The maximum burning temperature (735 °C) and combustion heat (1900.5 J g−1) have a relatively low value, and the content of CO is the lowest (8390 ppm).


ADC/BCN Gas-generating agents Metal oxides TG–DSC Burning performance 



This work was supported by the Fundamental Research Funds for the National Natural Science Foundation of China (NSFC51202113) and Central Universities (NUST 2011 YBXM10).


  1. 1.
    Kirchoff GF, Schneiter FE. Pelletizable, rapid and cool burning solid nitrogen gas generate. US Patent 4203787; 1980.Google Scholar
  2. 2.
    Munich S Z, Deisenhofen WH. Gas-generating composition. US Patent 4834817; 1989.Google Scholar
  3. 3.
    Catwright R V. Crash bag propellant composition and method for generating nitrogen gas. US Patent 4929290; 1990.Google Scholar
  4. 4.
    Ramaswamy CP, Souriraja PR. Gas generating composition for air bags. US Patent 5089069; 1992.Google Scholar
  5. 5.
    Ube YI, Kitakyushu KI, Yamaguchi MM. Gas generating composition for automobile air bag. US Patent 5178696; 1993.Google Scholar
  6. 6.
    Chen S, Cheng Y. Study on composition of sodium azide gas generan. Initiat Pyrotech. 2001;4:37–9.Google Scholar
  7. 7.
    Chang S, Lamm SH. Human health effects of sodium azide exposure: a literature review and analysis. Int J Toxicol. 2003;22(3):175–86.CrossRefGoogle Scholar
  8. 8.
    Trout D, Esswein EJ, Brown K, Solomon G, Miller M. Exposure and health effects: an evaluation of workers at sodium azide production. Am J Ind Med. 1996;30(3):343–50.CrossRefGoogle Scholar
  9. 9.
    Hongshe W. Study on nitrogen-rich based gas generating pyrotechnic compositions. Ph.D. dissertation, Beijing: Beijing Institute of Technology; 2005.Google Scholar
  10. 10.
    Qamirani E, Razavi HM, Wu X, Davis MJ, Kuo L, Hein TW. Sodium azide dilates coronary arterioles via activation of inward rectifier K+ channels and Na+–K+–ATPase. Am J Physiol Heart Circ Physiol. 2006;290(4):H1617–23.CrossRefGoogle Scholar
  11. 11.
    Xiande Y. Productions and applications of azodicarbonamide foaming agent in China. Chem Propellants Polym Mater. 2004;1:44–48.Google Scholar
  12. 12.
    Oxley JC, Smith JL, Naik S, Moran J. Decompositions of urea and guanidine nitrates. J Energ Mater. 2009;27:17–39.CrossRefGoogle Scholar
  13. 13.
    Takashi K, Yoshida T. The combustion characteristic of ADCA. Gunpower Soc. 1995;56(6):249.Google Scholar
  14. 14.
    Hara K, Yoshida T. Proceedings of the 20th international pyrotechnics seminar. Colorado Springs, USA, 9; 1994.Google Scholar
  15. 15.
    Hara Kazuo, Yoshida Tadao. Concept and performance of a non-azide propellant for automotive. Propellants Explos Pyrotech. 1998;23:28–33.CrossRefGoogle Scholar
  16. 16.
    Jianzhou W. Gas-generating agent composition. CN Patent 200410086968.7; 2003.Google Scholar
  17. 17.
    Jianzhou W. Gas-generating agent composition. CN Patent 03801083.6; 2003.Google Scholar
  18. 18.
    Yuping Li. The study of a new gas generating composition for automobile safety airbag. Master dissertation, North University of China; 06-01, 2010.Google Scholar
  19. 19.
    Matsuoka Ichi, Toyama. The gas generating composition. CN Patent 95192492.3. 1995.Google Scholar
  20. 20.
    Li Yanchun, Cheng Yi, Hui Yun-Long, Yan Shi. The effect of ambient temperature and boron content on the burning rate of the B/Pb3O4 delay compositions. J Energ Mater. 2010;28:77–84.CrossRefGoogle Scholar
  21. 21.
    Reed RA. The kinetics and mechanism of the thermal decomposition of azodicarbonamide. Br Plast. 1960;33(10):468–72.Google Scholar
  22. 22.
    Mei Xinliang, Cheng Yi, Li Yanchun. Thermal decomposition properties of guanidine nitrate and basic cupric nitrate. J Therm Anal Calorim. 2013;114:131–5.CrossRefGoogle Scholar
  23. 23.
    Hao J, Yu J, Bao G, Che J. Pre-ignition reactions mechanism of B/BaCrO4 delay composition. Initiat Pyrotech 2006;3:27–9.Google Scholar
  24. 24.
    Jie Zhang, Ling Shi, JunYing Zhang. The mechanism of thermal decomposition of azodicarbonamide and the influence of zinc oxide. Natural Science. 2011;38(3):39–42.Google Scholar
  25. 25.
    Akiyoshi Miyako, Nakamura Hidetsugu, Hara Yasutake. The strontium complex nitrates of carbohydrazide as a non-azide gas generator for safer driving-the thermal behavior of the Sr complex with various oxidizing agents. Propellants Explos Pyrotech. 2000;25:224–9.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Hongtao Yang
    • 1
  • Tiantian Xu
    • 1
  • Xuqiang Zhu
    • 1
  • Xiangyu Li
    • 1
  • Yanchun Li
    • 1
  1. 1.School of Chemical EngineeringNanjing University of Science and TechnologyNanjingPeople’s Republic of China

Personalised recommendations