Journal of Thermal Analysis and Calorimetry

, Volume 122, Issue 3, pp 1423–1433 | Cite as

Physical ageing and molecular mobility in PLA blends and composites

  • Péter Müller
  • Balázs Imre
  • József Bere
  • János Móczó
  • Béla Pukánszky


Poly(lactic acid) (PLA) blends and composites were prepared from thermoplastic starch, poly(butylene-adipate-co-terephtalate), polycarbonate, wood flour and CaSO4 in a wide range of compositions. The thermal transitions of PLA were studied by differential scanning calorimetry. The detailed analysis of the transitions of PLA/thermoplastic starch blends indicated that they all are determined by the molecular mobility of PLA chains. Blending changes molecular mobility, and thus it often decreases glass transition temperature and modifies the extent of enthalpy relaxation. All other transitions and characteristics, i.e. cold crystallization, melting and the corresponding enthalpies, change accordingly. Increased molecular mobility accelerates also the physical ageing of the polymer. The interaction between PLA and the various components used for modification changed in a wide range, but no direct correlation was found between the strength of interaction and molecular mobility.


PLA Blends Composites Thermal transitions DSC Molecular mobility Physical ageing 



The authors are indebted to Zsolt László for his help in the determination of the particle characteristics of wood. The research on heterogeneous polymer systems was financed by the National Scientific Research Fund of Hungary (OTKA Grant No. K 101124) and by the Forbioplast FP7 project of EU (212239); we appreciate the support very much.


  1. 1.
    Sawyer DJ. Bioprocessing—no longer a field of dreams. Macromol Symp. 2003;201:271–82.CrossRefGoogle Scholar
  2. 2.
    Ogawa S, Obuchi S. Packaging and other commercial applications. In: Auras R, Lim L-T, Selke SEM, Tsuji H, editors. Poly(lactic acid): synthesis, structures, properties, processing, and applications. Hoboken, New Jersey: Wiley; 2010. p. 457–67.Google Scholar
  3. 3.
    Auras R, Harte B, Selke S. An overview of polylactides as packaging materials. Macromol Biosci. 2004;4:835–64.CrossRefGoogle Scholar
  4. 4.
    Ghosh SB, Bandyopadhyay-Ghosh S, Sain M. Composites. In: Auras R, Lim L-T, Selke SEM, Tsuji H, editors. Poly(lactic acid). Hoboken, New Jersey: Wiley; 2010. p. 293–310.Google Scholar
  5. 5.
    Li H, Huneault MA. Effect of nucleation and plasticization on the crystallization of poly(lactic acid). Polymer. 2007;48:6855–66.CrossRefGoogle Scholar
  6. 6.
    Saeidlou S, Huneault MA, Li H, Park CB. Poly(lactic acid) crystallization. Prog Polym Sci. 2012;37:1657–77.CrossRefGoogle Scholar
  7. 7.
    Celli A, Scandola M. Thermal properties and physical ageing of poly (l-lactic acid). Polymer. 1992;33:2699–703.CrossRefGoogle Scholar
  8. 8.
    Kwon M, Lee S, Jeong Y. Influences of physical aging on enthalpy relaxation behavior, gas permeability, and dynamic mechanical property of polylactide films with various D-isomer contents. Macromol Res. 2010;18:346–51.CrossRefGoogle Scholar
  9. 9.
    Li B, Chen SC, Qiu ZC, Yang QKK, Tang SP, Yu WJ, Wang YZ. Synthesis of poly(lactic acid-b-p-dioxanone) block copolymers from ring opening polymerization of p-dioxanone by poly(l-lactic acid) macroinitiators. Polym Bull. 2008;61:139–46.CrossRefGoogle Scholar
  10. 10.
    Ho CH, Wang CH, Lin CI, Lee YD. Synthesis and characterization of TPO-PLA copolymer and its behavior as compatibilizer for PLA/TPO blends. Polymer. 2008;49:3902–10.CrossRefGoogle Scholar
  11. 11.
    Södergard A, Stolt M. Properties of lactic acid based polymers and their correlation with composition. Prog Polym Sci. 2002;27:1123–63.CrossRefGoogle Scholar
  12. 12.
    Lemmouchi Y, Murariu M, Dos Santos AM, Amass AJ, Schacht E, Dubois P. Plasticization of poly(lactide) with blends of tributyl citrate and low molecular weight poly(d, l-lactide)-b-poly(ethylene glycol) copolymers. Eur Polym J. 2009;45:2839–48.CrossRefGoogle Scholar
  13. 13.
    Martin O, Averous L. Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer. 2001;42:6209–19.CrossRefGoogle Scholar
  14. 14.
    Ljungberg N, Wesslen B. Tributyl citrate oligomers as plasticizers for poly (lactic acid): thermo-mechanical film properties and aging. Polymer. 2003;44:7679–88.CrossRefGoogle Scholar
  15. 15.
    Gu SY, Zhang K, Ren J, Zhan H. Melt rheology of polylactide/poly(butylene adipate-co-terephthalate) blends. Carbohydr Polym. 2008;74:79–85.CrossRefGoogle Scholar
  16. 16.
    Rohman G, Laupretre F, Boileau S, Guerin P, Grande D. Poly(d, l-lactide)/poly(methyl methacrylate) interpenetrating polymer networks: synthesis, characterization, and use as precursors to porous polymeric materials. Polymer. 2007;48:7017–28.CrossRefGoogle Scholar
  17. 17.
    Gorna K, Hund M, Vucak M, Grohn F, Wegner G. Amorphous calcium carbonate in form of spherical nanosized particles and its application as fillers for polymers. Mater Sci Eng A Struct Mater Prop Microstruct Process. 2008;477:217–25.CrossRefGoogle Scholar
  18. 18.
    Bleach NC, Nazhat SN, Tanner KE, Kellomäki M, Törmälä P. Effect of filler content on mechanical and dynamic mechanical properties of particulate biphasic calcium phosphate-polylactide composites. Biomaterials. 2002;23:1579–85.CrossRefGoogle Scholar
  19. 19.
    Pluta M, Murariu M, Alexandre M, Galeski A, Dubois P. Polylactide compositions. The influence of ageing on the structure, thermal and viscoelastic properties of PLA/calcium sulfate composites. Polym Degrad Stabil. 2008;93:925–31.CrossRefGoogle Scholar
  20. 20.
    Imre B, Keledi G, Renner K, Móczó J, Murariu M, Dubois P, Pukánszky B. Adhesion and micromechanical deformation processes in PLA/CaSO4 composites. Carbohydr Polym. 2012;89:759–67.CrossRefGoogle Scholar
  21. 21.
    Liu T, Yu F, Yu X, Zhao X, Lu A, Wang J. Basalt fiber reinforced and elastomer toughened polylactide composites: mechanical properties, rheology, crystallization, and morphology. J Appl Polym Sci. 2012;125:1292–301.CrossRefGoogle Scholar
  22. 22.
    Shen L, Yang H, Ying J, Qiao F, Peng M. Preparation and mechanical properties of carbon fiber reinforced hydroxyapatite/polylactide biocomposites. J Mater Sci Mater Med. 2009;20:2259–65.CrossRefGoogle Scholar
  23. 23.
    Plackett D, Logstrupndersen T. Batsberg Pedersen W and Nielsen L. Biodegradable composites based on -polylactide and jute fibres. Compos. Sci. Technol. 2003;63:1287–96.CrossRefGoogle Scholar
  24. 24.
    Tábi T, Sajo IE, Szabó F, Luyt AS, Kovács JG. Crystalline structure of annealed polylactic acid and its relation to processing. Express Polym Lett. 2010;4:659–68.CrossRefGoogle Scholar
  25. 25.
    Perego G, Cella GD. Mechanical properties. In: Auras R, Lim L-T, Selke SEM, Tsuji H, editors. Poly(lactic acid): synthesis, structures, properties, processing, and applications. Hoboken, New Jersey: Wiley; 2010. p. 141–53.Google Scholar
  26. 26.
    Malmgren T, Mays J, Pyda M. Characterization of poly(lactic acid) by size exclusion chromatography, differential refractometry, light scattering and thermal analysis. J Therm Anal Calorim. 2006;83:35–40.CrossRefGoogle Scholar
  27. 27.
    Day M, Nawaby AV, Liao X. A DSC study of the crystallization behaviour of polylactic acid and its nanocomposites. J Therm Anal Calorim. 2006;86:623–9.CrossRefGoogle Scholar
  28. 28.
    Molnár K, Móczó J, Murariu M, Dubois P, Pukánszky B. Factors affecting the properties of PLA/CaSO4 composites: homogeneity and interactions. Express Polym Lett. 2009;3:49–61.CrossRefGoogle Scholar
  29. 29.
    Chow WS, Lok SK. Thermal properties of poly(lactic acid)/organo-montmorillonite nanocomposites. J Therm Anal Calorim. 2009;95:627–32.CrossRefGoogle Scholar
  30. 30.
    Shi N, Dou Q. Non-isothermal cold crystallization kinetics of poly(lactic acid)/poly(butylene adipate-co-terephthalate)/treated calcium carbonate composites. J Therm Anal Calorim. 2015;119:635–42.CrossRefGoogle Scholar
  31. 31.
    Delpouve N, Arnoult M, Saiter A, Dargent E, Saiter J-M. Evidence of two mobile amorphous phases in semicrystalline polylactide observed from calorimetric investigations. Polym Eng Sci. 2014;54:1144–50.CrossRefGoogle Scholar
  32. 32.
    Harris AM, Lee EC. Improving mechanical performance of injection molded PLA by controlling crystallinity. J Appl Polym Sci. 2008;107:2246–55.CrossRefGoogle Scholar
  33. 33.
    Kolstad JJ. Crystallization kinetics of poly(l-lactide-co-meso-lactide). J Appl Polym Sci. 1996;62:1079–91.CrossRefGoogle Scholar
  34. 34.
    Tsuji H, Takai H, Fukuda N, Takikawa H. Non-isothermal crystallization behavior of poly(l-lactic acid) in the presence of various additives. Macromol Mater Eng. 2006;291:325–35.CrossRefGoogle Scholar
  35. 35.
    Pan P, Liang Z, Cao A, Inoue Y. Layered metal phosphonate reinforced poly(l-lactide) composites with a highly enhanced crystallization rate. ACS Appl Mater Interfaces. 2009;1:402–11.CrossRefGoogle Scholar
  36. 36.
    Qian X, Zhou M, Xu D, Xu SJ, Jin YF. Isothermal and non-isothermal crystallization behavior of poly(l-lactic acid) with nucleating agents. In: Kim YH, Yarlagadda P, Zhang XD, Ai ZJ, editors. Adv Mater Struct. 2011; 335–336(Pts 1 and 2):1299–302.Google Scholar
  37. 37.
    Cheng S, Lau K, Liu T, Zhao Y, Lam P-M, Yin Y. Mechanical and thermal properties of chicken feather fiber/PLA green composites. Compos Part B. 2009;40:650–4.CrossRefGoogle Scholar
  38. 38.
    Fukushima K, Tabuani D, Camino G. Nanocomposites of PLA and PCL based on montmorillonite and sepiolite. Mater Sci Eng. 2009;29:1433–41.CrossRefGoogle Scholar
  39. 39.
    Picard E, Espuche E, Fulchiron R. Effect of an organo-modified montmorillonite on PLA crystallization and gas barrier properties. Appl Clay Sci. 2011;53:58–65.CrossRefGoogle Scholar
  40. 40.
    Zhao Y-Q, Cheung H-Y, Lau K-T, Xu C-L, Zhao D-D, Li H-L. Silkworm silk/poly(lactic acid) biocomposites: dynamic mechanical, thermal and biodegradable properties. Polym Degrad Stab. 2010;95:1978–87.CrossRefGoogle Scholar
  41. 41.
    Anderson KS, Hillmyer MA. Melt preparation and nucleation efficiency of polylactide stereocomplex crystallites. Polymer. 2006;47:2030–5.CrossRefGoogle Scholar
  42. 42.
    Kulinski Z, Piorkowska E. Crystallization, structure and properties of plasticized poly(l-lactide). Polymer. 2005;46:10290–300.CrossRefGoogle Scholar
  43. 43.
    Kulinski Z, Piorkowska E, Gadzinowska K, Stasiak M. Plasticization of poly(l-lactide) with poly(propylene glycol). Biomacromolecules. 2006;7:2128–35.CrossRefGoogle Scholar
  44. 44.
    Piorkowska E, Kulinski Z, Galeski A, Masirek R. Plasticization of semicrystalline poly(l-lactide) with poly(propylene glycol). Polymer. 2006;47:7178–88.CrossRefGoogle Scholar
  45. 45.
    Arrieta MP, López J, Hernández A, Rayón E. Ternary PLA–PHB–limonene blends intended for biodegradable food packaging applications. Eur Polym J. 2014;50:255–70.CrossRefGoogle Scholar
  46. 46.
    Pongtanayut K, Thongpin C, Santawitee O. The effect of rubber on morphology, thermal properties and mechanical properties of PLA/NR and PLA/ENR blends. Energy Proc. 2013;34:888–97.CrossRefGoogle Scholar
  47. 47.
    Abdelwahab MA, Flynn A, Chiou B-S, Imam S, Orts W, Chiellini E. Thermal, mechanical and morphological characterization of plasticized PLA–PHB blends. Polym Degrad Stab. 2012;97:1822–8.CrossRefGoogle Scholar
  48. 48.
    Jandas PJ, Mohanty S, Nayak SK. Thermal properties and cold crystallization kinetics of surface-treated banana fiber (BF)-reinforced poly(lactic acid) (PLA) nanocomposites. J Therm Anal Calorim. 2013;114:1265–78.CrossRefGoogle Scholar
  49. 49.
    Chieng B, Ibrahim N, Wan Yunus W, Hussein M, Loo Y. Effect of graphene nanoplatelets as nanofiller in plasticized poly(lactic acid) nanocomposites. J Therm Anal Calorim. 2014;118:1551–9.CrossRefGoogle Scholar
  50. 50.
    Park JW, Im SS, Kim SH, Kim YH. Biodegradable polymer blends of poly(l-lactic acid) and gelatinized starch. Polym Eng Sci. 2000;40:2539–50.CrossRefGoogle Scholar
  51. 51.
    Teixeira ED, Curvelo AAS, Correa AC, Marconcini JM, Glenn GM, Mattoso LHC. Properties of thermoplastic starch from cassava bagasse and cassava starch and their blends with poly (lactic acid). Ind Crop Prod. 2012;37:61–8.CrossRefGoogle Scholar
  52. 52.
    Li H, Huneault MA. Crystallization of PLA/thermoplastic starch blends. Int Polym Process. 2008;23:412–8.CrossRefGoogle Scholar
  53. 53.
    Li H, Huneault MA. Comparison of sorbitol and glycerol as plasticizers for thermoplastic starch in TPS/PLA blends. J Appl Polym Sci. 2011;119:2439–48.CrossRefGoogle Scholar
  54. 54.
    Iovino R, Zullo R, Rao MA, Cassar L, Gianfreda L. Biodegradation of poly(lactic acid)/starch/coir biocomposites under controlled composting conditions. Polym Degrad Stab. 2008;93:147–57.CrossRefGoogle Scholar
  55. 55.
    Sarazin P, Li G, Orts WJ, Favis BD. Binary and ternary blends of polylactide, polycaprolactone and thermoplastic starch. Polymer. 2008;49:599–609.CrossRefGoogle Scholar
  56. 56.
    Phetwarotai W, Potiyaraj P, Aht-Ong D. Biodegradation of polylactide and gelatinized starch blend films under controlled soil burial conditions. J Polym Environ. 2013;21:95–107.CrossRefGoogle Scholar
  57. 57.
    Huneault MA, Li H. Morphology and properties of compatibilized polylactide/thermoplastic starch blends. Polymer. 2007;48:270–80.CrossRefGoogle Scholar
  58. 58.
    Lu DR, Xiao CM, Xu SJ. Starch-based completely biodegradable polymer materials. Express Polym Lett. 2009;3:366–75.CrossRefGoogle Scholar
  59. 59.
    Kawai T, Rahman N, Matsuba G, Nishida K, Kanaya T, Nakano M, Okamoto H, Kawada J, Usuki A, Honma N, Nakajima K, Matsuda M. Crystallization and melting behavior of poly (l-lactic acid). Macromolecules. 2007;40:9463–9.CrossRefGoogle Scholar
  60. 60.
    Zhang J, Tashiro K, Tsuji H, Domb AJ. Disorder-to-order phase transition and multiple melting behavior of poly(l-lactide) investigated by simultaneous measurements of WAXD and DSC. Macromolecules. 2008;41:1352–7.CrossRefGoogle Scholar
  61. 61.
    Pan P, Zhu B, Inoue Y. Enthalpy relaxation and embrittlement of poly(l-lactide) during physical aging. Macromolecules. 2007;40:9664–71.CrossRefGoogle Scholar
  62. 62.
    Dorgan JR, Janzen J, Clayton MP, Hait SB, Knauss DM. Melt rheology of variable l-content poly(lactic acid). J Rheol. 2005;49:607–19.CrossRefGoogle Scholar
  63. 63.
    Blomqvist J. RIS Metropolis Monte Carlo studies of poly(l-lactic), poly(l, d-lactic) and polyglycolic acids. Polymer. 2001;42:3515–21.CrossRefGoogle Scholar
  64. 64.
    Dorgan JR, Janzen J, Knauss DM, Hait SB, Limoges BR, Hutchinson MH. Fundamental solution and single-chain properties of polylactides. J Polym Sci Part A Polym Phys. 2005;43:3100–11.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Péter Müller
    • 1
    • 2
  • Balázs Imre
    • 1
    • 2
  • József Bere
    • 1
    • 2
  • János Móczó
    • 1
    • 2
  • Béla Pukánszky
    • 1
    • 2
  1. 1.Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials ScienceBudapest University of Technology and EconomicsBudapestHungary
  2. 2.Institute of Materials and Environmental Chemistry, Chemical Research CenterHungarian Academy of SciencesBudapestHungary

Personalised recommendations