Journal of Thermal Analysis and Calorimetry

, Volume 122, Issue 3, pp 1231–1237 | Cite as

Thermogravimetric study of water affinity of gelatin materials

  • P. O. Kuzema
  • O. N. Stavinskaya
  • I. V. Laguta
  • O. A. Kazakova


Gelatin materials in the form of thin films were prepared using film-forming gelatin solutions with pH value of 2.5–6.8; interaction of gelatin with water in the films and in the solutions was studied. Thermogravimetric analysis at temperature up to 200 °C was used to identify and characterize free and bound water present in dried films. To simulate the water–gelatin interaction and to interpret thermogravimetric data, quantum chemical calculations along with the studies on the films swelling were performed. For both free water and bound water, the parameters of thermal desorption process were found to be affected by pH of film-forming solution. The observed changes in content of free and bound water and in apparent activation energies of water thermal desorption may be attributed to the growth of the quantity of negatively charged groups in gelatin molecules upon pH increase and to the changes in film structure and water affinity resulting from the charged groups interaction. Thus, by varying pH of the solution, one may influence the affinity of the films with respect to water and change the properties and usability of gelatin materials.


Gelatin Water TG DTG Quantum chemical calculations 


  1. 1.
    Smitha S, Mukundan P, Krishna Pillai P, Warrier KGK. Silica-gelatin bio-hybrid and transparent nano-coatings through sol–gel technique. Mater Chem Phys. 2007;103:318–22.CrossRefGoogle Scholar
  2. 2.
    Gadomski W, Ratajska-Gadomska B. Evolution of water structure in biopolymer solutions during the gelation process. Chem Phys Lett. 2004;399:471–4.CrossRefGoogle Scholar
  3. 3.
    Maquet J, Théveneau H, Djabourov M, Leblond J, Papon P. State of water in gelatin solutions and gels: an 1H n.m.r. investigation. Polymer. 1986;27(1103–10):4.Google Scholar
  4. 4.
    Benjakul S, Kittiphattanabawon P, Regenstein JM. Fish gelatin. In: Simpson BK, Nollet L, Paliyath G, Benjakul S, Nip WK, Hui Y, editors. Food biochemistry and food processing. 2nd ed. Wiley: New York; 2012. p. 388–406.CrossRefGoogle Scholar
  5. 5.
    Gomez-Guillen MC, Gimenez B, Lopez-Caballero ME, Montero MP. Functional and bioactive properties of collagen and gelatin from alternative sources: a review. Food Hydrocoll. 2011;25:1813–27.CrossRefGoogle Scholar
  6. 6.
    Santoro M, Tatara AM, Mikos AG. Gelatin carriers for drug and cell delivery in tissue engineering. J Control Release. 2014;1(90):210–8.CrossRefGoogle Scholar
  7. 7.
    Elzoghby AO. Gelatin-based nanoparticles as drug and gene delivery systems: reviewing three decades of research. J Control Release. 2013;172:1075–91.CrossRefGoogle Scholar
  8. 8.
    Pinhas M-F, Blanshard JMV, Derbyshire W. The effect of water on the physicochemical and mechanical properties of gelatin. J Therm Anal Calorim. 1996;47:1499–511.CrossRefGoogle Scholar
  9. 9.
    Stavinskaya O, Laguta I, Orel I. Silica-gelatin composite materials for prolonged desorption of bioactive compounds. J Mater Sci (Medžiagotyra). 2014;20:171–6.Google Scholar
  10. 10.
    Cetin EO, Buduneli N, Atlthan E, Kirilmaz L. In vitro studies of degradable device for controlled release of meloxicam. J Clin Periodontol. 2005;32:773–7.CrossRefGoogle Scholar
  11. 11.
    Wang Q, Jia C, Jiang Q, Wang Y, Wu D. Pyrolysis model of oil sand using thermogravimetric analysis. J Therm Anal Calorim. 2014;116:499–509.CrossRefGoogle Scholar
  12. 12.
    Kim S, Jang E-S, Shin D-H, Lee K-H. Using peak properties of a DTG curve to estimate the kinetic parameters of the pyrolysis reaction: application to high density polyethylene. Polym Degrad Stab. 2004;85:799–805.CrossRefGoogle Scholar
  13. 13.
    Kissinger HE. Research kinetic constants of the topochemical process. Anal Chem. 1957;29:1702–11.CrossRefGoogle Scholar
  14. 14.
    Cances E, Mennucci B, Tomasi J. A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys. 1997;107:3032–41.CrossRefGoogle Scholar
  15. 15.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JJ, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA Jr. General atomic and molecular electronic structure system. J Comput Chem. 1993;14:1347–63.CrossRefGoogle Scholar
  16. 16.
    Stavinskaya ON, Laguta IV, Kuzema PO. Effect of highly dispersed silica on water absorption of gelatin materials. Prot Met Phys Chem Surf. 2011;47:302–6.CrossRefGoogle Scholar
  17. 17.
    Barreto PLM, Pires ATN, Soldi V. Thermal degradation of edible films based on milk proteins and gelatin in inert atmosphere. Polym Degrad Stab. 2003;79:147–52.CrossRefGoogle Scholar
  18. 18.
    Mishra R, Majeed A, Banthia A. Development and characterization of pectin/gelatin hydrogel membranes for wound dressing. Int J Plast Technol. 2011;15:82–95.CrossRefGoogle Scholar
  19. 19.
    Vyazovkin S, Burnham AK, Criado JM, Luis A, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.CrossRefGoogle Scholar
  20. 20.
    Vyazovkin S, Chrissafis K, Di Lorenzo M-R, Koga N, Pijolat M, Roduit B, Sbirrazzuoli N, Suñol J-J. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23.CrossRefGoogle Scholar
  21. 21.
    Gelatin Manufacture Institute of America (GMIA). Gelatin handbook 2012. Accessed on 10 October 2014.
  22. 22.
    Sobral PJA, Menegalli FC, Hubinger MD, Roques MA. Mechanical, water vapor barrier and thermal properties of gelatin based edible films. Food Hydrocolls. 2001;15:423–32.CrossRefGoogle Scholar
  23. 23.
    Raja Mohd Hafidz RN, Yaakob CM, Amin I, Noorfaizan A. Chemical and functional properties of bovine and porcine skin gelatin. IFRJ. 2011;18:813–7.Google Scholar
  24. 24.
    Drozdov SV, Vostrikov AA. Structural features and energy of small water clusters. Tech Phys Lett. 2000;26:397–9.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • P. O. Kuzema
    • 1
  • O. N. Stavinskaya
    • 1
  • I. V. Laguta
    • 1
  • O. A. Kazakova
    • 1
  1. 1.Chuiko Institute of Surface Chemistry of National Academy of Sciences of UkraineKievUkraine

Personalised recommendations