Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 122, Issue 2, pp 645–652 | Cite as

Oxidation of boron carbide powder

  • Ashish Jain
  • S. Anthonysamy
Article

Abstract

The oxidation of boron carbide powder was studied by using thermogravimetric technique. The oxidation was carried out by heating boron carbide powder in a stream of oxygen. Both isothermal and non-isothermal methods were used to study the kinetics of oxidation. Model-free isoconversional method was used to derive the kinetic parameters. A multistep (three steps) oxidation reaction was observed. The oxidation reaction did not reach to completion due to the formation of glassy layer of boric oxide on the surface of boron carbide powder. This acts as a barrier for further diffusion of oxygen into boron carbide particles and for the release of CO2 from boron carbide. The effective activation energy obtained using isoconversional method for boron carbide was 211 ± 8 kJ mol−1 for ‘α’ = 0.1–0.3. It was inferred that room temperature oxidation of boron carbide is a kinetically hindered process.

Keywords

Carbides Kinetics Oxidation Thermogravimetric analysis Isoconversional method 

References

  1. 1.
    Suri AK, Subramanian C, Sonber JK, Murthy TSRCH. Synthesis and consolidation of boron carbide: a review. Int Mater Rev. 2010;55(1):4–40.CrossRefGoogle Scholar
  2. 2.
    Subramanian C, Suri AK. Development of boron based neutron absorber materials. Met Mater Process. 2004;16:39–52.Google Scholar
  3. 3.
    Rajan Babu V, Veerasamy R, Patri Sudheer, Ignatius Sundar Raj S, Kumar Krovvidi SCSP, Dash SK, Meikandamurthy C, Rajan KK, Puthiyavinayagam P, Chellapandi P, Vaidyanathan G, Chetal SC. Testing and qualification of control & safety rod and its drive mechanism of fast breeder reactor. Nucl Eng Des. 2010;240:1728–38.CrossRefGoogle Scholar
  4. 4.
    Jain A, Anthonysamy S, Ananthasivan K, Ranganathan R, Vinit M, Narasimhan SV, Rao PRV. Characterization of electrodeposited boron. Mater Charact. 2008;59:890–900.CrossRefGoogle Scholar
  5. 5.
    Li YQ, Qiu T. Oxidation behavior of boron carbide powder. Mater Sci Eng A. 2007;444:184–91.CrossRefGoogle Scholar
  6. 6.
    Jander W, Anorg Z. Allg. Chem. Reaktionen im festen Zustande bei höheren Temperaturen. Reaktionsgeschwindigkeiten endotherm verlaufender Umsetzungen. 1927; 163: 1–30.Google Scholar
  7. 7.
    Zehringer R, Kunzli H, Oelhafen P, Hollenstein C. Oxidation behaviour of boron carbide. J Nucl Mater. 1990;176–177:370–4.CrossRefGoogle Scholar
  8. 8.
    Steiner H. Modeling of boron carbide oxidation in steam. J Nucl Mater. 2005;345:75–83.CrossRefGoogle Scholar
  9. 9.
    Dominguez C, Cocuaud N, Drouan D, Constant A, Jacquemain D. Investigation on boron carbide oxidation for nuclear reactor safety: experiments in highly Oxidizing conditions. J Nucl Mater. 2008;374:473–81.CrossRefGoogle Scholar
  10. 10.
    Gogotsi YuG, Yaroshenko VP, Porz F. Oxidation resistance of boron carbide based ceramics. J Mater Sci Lett. 1992;11:308–10.CrossRefGoogle Scholar
  11. 11.
    Viricelle JP, Goursat P, Bahloul-Hourlier D. Oxidation behavior of a boron carbide based material in dry and wet oxygen. J Therm Anal Calorim. 2001;63:507–15.CrossRefGoogle Scholar
  12. 12.
    Lawrence ML, Mercuri RA. Oxidation of boron carbide by air, water and air-water mixture at elevated temperatures. J Electrochem Soc. 1963;110(8):921–5.CrossRefGoogle Scholar
  13. 13.
    Nazarchuk TN, Mekhanoshina LN. The oxidation of boron carbide. Sov Powder Metall Met Ceram. 1964;3(2):123–6.CrossRefGoogle Scholar
  14. 14.
    Vyazovkin S, Charles AW. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta. 1999;340–341:53–68.CrossRefGoogle Scholar
  15. 15.
    Sayi YS, Ramkumar KL, Venugoal V. Determination of non-metallic impurities in nuclear fuel. IANCAS Bull. 2008;VII(3):180–1.Google Scholar
  16. 16.
    Chetty KV, Radhakrishna J, Sayi YS, Balachander N, Venkataramana P, Natarajan PR. Radiochem Radioanal Lett. 1983; 58: 161–62.Google Scholar
  17. 17.
    Brown ME, Dollimore D, Galwey AK. Comprehensive chemical kinetics. 22nd vol. 22. Amsterdam: Elsevier; 1988.Google Scholar
  18. 18.
    Ortega A. A simple and precise linear integral method for isoconversional data. Thermochim Acta. 2008;474:81–6.CrossRefGoogle Scholar
  19. 19.
    Vyazovkin S. In: Brown ME, Gallagher PK editors, Hand book of thermal analysis and calorimetry, Vol. 5: recent advances, techniques and applications, Elsevier; 2008. pp. 503–38.Google Scholar
  20. 20.
    Rizzo HF. In: Gaule GK, Breslin JT, Pastore JR, Shuttleworth RA, editors. Boron: synthesis, structure and properties. I ed. New York: Plenum Press Inc; 1960. p. 175–81.CrossRefGoogle Scholar
  21. 21.
    Jain A, Joseph K, Anthonysamy S, Gupta GS. Kinetics of oxidation of boron powder. Thermochim Acta. 2011;514:67–73.CrossRefGoogle Scholar
  22. 22.
    Simon P. Isoconversional methods: fundamentals, meaning and application. J Therm Anal Calorim. 2004;76:123–32.CrossRefGoogle Scholar
  23. 23.
    Popescu C. Integral method to analyze the kinetics of heterogeneous reactions under non-isothermal conditions A variant on the Ozawa-Flynn-Wall method. Thermochim Acta. 1996;285:309–23.CrossRefGoogle Scholar
  24. 24.
    Vyazovkin S. An approach to the solution of the inverse kinetic problem in the case of complex process. Part 4. Chemical reaction complicated by diffusion. Thermochim Acta. 1993;223:201–6.CrossRefGoogle Scholar
  25. 25.
    Roberts AF. A review of kinetics data for the pyrolysis of wood and related substances. Combust Flame. 1970;14:261–72.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  1. 1.Chemistry GroupIndira Gandhi Centre for Atomic ResearchKalpakkamIndia

Personalised recommendations