Journal of Thermal Analysis and Calorimetry

, Volume 122, Issue 2, pp 997–1004 | Cite as

Effect of polishing waste additive on microstructure and foaming property of porcelain tile and kinetics of sinter-crystallization



Ceramic tiles were manufactured from an industrial powder batch of porcelain stoneware tiles with 0, 10, 30 and 50 mass% polishing waste and fired at 1100–1180 °C. The phase evolution and microstructure of ceramic tiles with the polishing waste were investigated by X-ray diffraction, differential thermal analysis and scanning electron microscope. The result showed that introduction of the polishing waste into porcelain tiles did not cause significant variations in the phase composition and facilitated the formation of mullite phase. The activation energies of mullite crystallization calculated by the Kissinger method were 780 ± 43, 828 ± 61, 493 ± 18 and 530 ± 30 kJ mol−1 for the porcelain tiles with 0, 10, 30 and 50 mass% polishing waste, respectively. In addition, the Avrami constant, n, gradually decreased with the increasing polishing waste content, indicating that the crystallization mechanism of mullite in porcelain stoneware tiles changed from two-dimensional crystallization to one-dimensional crystallization. The process of one-dimensional crystallization is more favorable to the formation of needle-shaped mullite and increases the length of mullite.


Polishing waste Porcelain tiles Kinetic crystallization 



This work was supported by the ChanXueYan Special Funds of Guangdong (No. 2012B091100306).


  1. 1.
    Sanchez E, Garcia-Ten J, Sanz V, Moreno A. Porcelain tile: almost 30 years of steady scientific-technological evolution. Ceram Int. 2010;36:831–45.CrossRefGoogle Scholar
  2. 2.
    Jorge MM, Jesus MR, Maximina R. Effect of microstructure on mechanical properties of porcelain stoneware. J Eur Ceram Soc. 2010;30:3063–9.CrossRefGoogle Scholar
  3. 3.
    Santos GRdos, Salvetti AR, Cabrelon MD, Morelli MR. Synthetic flux as a whitening agent for ceramic tiles. J Therm Anal Calorim. 2014;615:S459–61.Google Scholar
  4. 4.
    Acchar W, Dultra EJV. Thermal analysis and X-ray diffraction of untreated coffee’s husk ash reject and its potential use in ceramics. J Therm Anal Calorim. 2013;111:1331–4.CrossRefGoogle Scholar
  5. 5.
    Sanchez E, Ibanez MJ, Garcia-Ten J, Quereda MF, Hutchings IM, Xu YM. Porcelain tile microstructure: implications for polished tile properties. J Eur Ceram Soc. 2006;26:2533–40.CrossRefGoogle Scholar
  6. 6.
    Dondi M, Ercolani G, Guarini G, Melandri C, Raimondo M, Almendra E, Cavalcante P. The role of surface microstructure on the resistance to stains of porcelain stoneware tiles. J Eur Ceram Soc. 2005;25:357–65.CrossRefGoogle Scholar
  7. 7.
    Alves HJ, Freitas MR, Melchiades FG, Boschi AO. Dependence of surface porosity on the polishing depth of porcelain stoneware tiles. J Eur Ceram Soc. 2011;31:665–71.CrossRefGoogle Scholar
  8. 8.
    Gabaldón-Estevan D, Criado E, Monfort E. The green factor in European manufacturing: a case study of the Spanish ceramic tile industry. J Clean Prod. 2014;70:242–50.CrossRefGoogle Scholar
  9. 9.
    Silva J, de Brito J, Veiga R. Recycled red-clay ceramic construction and demolition waste for Mortars production. J Mater Civ Eng. 2010;22:236–44.CrossRefGoogle Scholar
  10. 10.
    Rambaldi E, Esposito L, Tucci A, Timellini G. Recycling of polishing porcelain stoneware residues in ceramic tiles. J Eur Ceram Soc. 2007;27:3509–15.CrossRefGoogle Scholar
  11. 11.
    Shui AZ, Xi XA, Wang YM, Cheng XS. Effect of silicon carbide additive on microstructure and properties of porcelain ceramics. Ceram Int. 2011;37:1557–62.CrossRefGoogle Scholar
  12. 12.
    Xi XA, Xu LF, Shui AZ, Wang YM, Naito M. Effect of silicon carbide particle size and CaO content on foaming properties during firing and microstructure of porcelain ceramics. Ceram Int. 2014;40:12931–8.CrossRefGoogle Scholar
  13. 13.
    García-Ten J, Saburit A, Bernardo E, Colombo P. Development of lightweight porcelain stoneware tiles using foaming agents. J Eur Ceram Soc. 2012;32:745–52.CrossRefGoogle Scholar
  14. 14.
    Christogerou A, Kavas T, Pontikes Y, Koyas S, Tabak Y, Angelopoulos GN. Use of boron wastes in the production of heavy clay ceramics. Ceram Int. 2009;35:447–52.CrossRefGoogle Scholar
  15. 15.
    Cheng XS, Ke SJ, Wang QH, Wang H, Shui AZ, Liu PA. Fabrication and characterization of anorthite-based ceramic using mineral raw materials. Ceram Int. 2012;38:3227–35.CrossRefGoogle Scholar
  16. 16.
    Xi XA, Shui AZ, Li YF, Wang YM, Abe H, Naito M. Effects of magnesium oxychloride and silicon carbide additives on the foaming property during firing for porcelain ceramics and their microstructure. J Eur Ceram Soc. 2012;32:3035–41.CrossRefGoogle Scholar
  17. 17.
    Radtke C, Brandao RV, Pezzi RP, Morais J, Baumvol IJR, Stedile FC. Characterization of SiC thermal oxidation. Nucl Instrum Methds Phys Res B. 2002;190:579–82.CrossRefGoogle Scholar
  18. 18.
    Jacobson NS. Kinetics and mechanism of corrosion of SiC by molten salts. J Am Ceram Soc. 1986;69:74–82.CrossRefGoogle Scholar
  19. 19.
    Fox DX, Smialek JL. Burner rig hot corrosion of silicon carbide and silicon nitride. J Am Ceram Soc. 1990;73:303–11.CrossRefGoogle Scholar
  20. 20.
    Feber MK, Ogle J, Tennery VJ, Henson V. Characterization of corrosion mechanisms in a sintered SiC exposed to basic coal slags. J Am Ceram Soc. 1985;68:191–7.CrossRefGoogle Scholar
  21. 21.
    Martín-Márquez J, Rincón JM, Romero M. Mullite development on firing in porcelain stoneware bodies. J Eur Ceram Soc. 2010;30:1599–607.CrossRefGoogle Scholar
  22. 22.
    Hojamberdiev M, Eminov A, Xu YH. Utilization of muscovite granite waste in the manufacture of ceramic tiles. Ceram Int. 2011;37:871–6.CrossRefGoogle Scholar
  23. 23.
    Belhouchet H, Hamidouche M, Torrecillas R, Fantozzi G. The non-isothermal kinetics of mullite formation in boehmite-zircon mixtures. J Therm Anal Calorim. 2014;116:795–803.CrossRefGoogle Scholar
  24. 24.
    Tkalcec E, Kurajica S, Ivankovic H. Diphasic aluminosilicate gels with two stage mullitization in temperature range of 1200–1300 °C. J Eur Ceram Soc. 2005;25:613–26.CrossRefGoogle Scholar
  25. 25.
    Johnson BR, Kriven WM, Schneider J. Crystal structure development during devitrification of quenched mullite. J Eur Ceram Soc. 2001;21:2541–62.CrossRefGoogle Scholar
  26. 26.
    Takei T, Kameshima Y, Yasumori A. Crystallization kinetics of mullite from Al2O3–SiO2 glasses under non-isothermal conditions. J Eur Ceram Soc. 2001;21:2487–93.CrossRefGoogle Scholar
  27. 27.
    Djangang CN, Tchamba AB, Kamseu E, Melo UC, Elimbi A, Ferrari AM, Leonelli C. Reaction sintering and microstructural evolution in metakaolin-metastable alumina composites. J Therm Anal Calorim. 2014;117:1035–45.CrossRefGoogle Scholar
  28. 28.
    Kaljuvee T, Stubna I, Somelar P, Mikli V, Kuusik R. Thermal behavior of some Estonian clays and their mixtures with oil shale ash additives. J Therm Anal Calorim. 2014;118:891–9.CrossRefGoogle Scholar
  29. 29.
    Kissinger HE. Variations of peak temperature with heating rate in differential thermal analysis. J Res Nat1 Bur Stnd. 1956;57:217–21.CrossRefGoogle Scholar
  30. 30.
    El-Karsani KSM, Al-Muntasheri GA, Sultan AS, Hussein IA. Gelation kinetics of PAM/PEI system DSC investigation. J Therm Anal Calorim. 2014;116:1409–15.CrossRefGoogle Scholar
  31. 31.
    Fandaruff C, Araya-Sibaja AM, Pereira RN, Hoffmeister CRD, Rocha HVA, Silva MAS. Thermal behavior and decomposition kinetics of efavirenz under isothermal and non-isothermal conditions. J Therm Anal Calorim. 2014;115:2351–6.CrossRefGoogle Scholar
  32. 32.
    Vilmin G, Komarneni S, Roy R. Lowering crystallization temperature of zircon by nanoheterogeneous sol–gel processing. J Mater Sci. 1987;22:3556–60.CrossRefGoogle Scholar
  33. 33.
    Zhang Y, Li B, Rao PG, Lv M, Wu JQ. Seeded crystallization of leucite. J Am Ceram Soc. 2007;90:1615–8.CrossRefGoogle Scholar
  34. 34.
    Li DX, Thomson WJ. Mullite formation kinetics of a single-phase gel. J Am Ceram Soc. 1990;73:964–9.CrossRefGoogle Scholar
  35. 35.
    Lee JS, Yu SC. Mullite formation kinetics of coprecipitated Al2O3-SiO2 gels. Mater Res Bull. 1992;27:405–16.CrossRefGoogle Scholar
  36. 36.
    Huling JC, Messing GL. Epitactic nucleation of spinel in aluminosilicate gels and its effect on mullite crystallization. J Am Ceram Soc. 1991;74:2374–81.CrossRefGoogle Scholar
  37. 37.
    Takei T, Kameshima Y, Yasumori A, Okada K. Crystallization kinetics of mullite in alumina-silica glass fibers. J Am Ceram Soc. 1999;82:2876–80.CrossRefGoogle Scholar
  38. 38.
    Gualtieri A, Bellotto M, Artioli G, Clark SM. Kinetic study of the kaolinite-mullite reaction sequence. Part II: mullite formation. Phys Chem Miner. 1995;22:215–22.CrossRefGoogle Scholar
  39. 39.
    Augis JA, Bennet JE. Calculation of the avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J Therm Anal Calorim. 1978;13:283–92.CrossRefGoogle Scholar
  40. 40.
    Ke SJ, Wang YM, Pan ZD. Crystallization kinetics of neodymium disilicate obtained by polymeric xerogels. J Mater Sci. 2014;49:3736–41.CrossRefGoogle Scholar
  41. 41.
    Clupper DC, Hench LL. Crystallization kinetics of tape cast bioactive glass 45S5. J Non Cryst Solids. 2003;318:43–8.CrossRefGoogle Scholar
  42. 42.
    EI-Shennawi AWA, Hamzawy EMA, Khater GA, Omar AA. Crystallization of some aluminosilicate glasses. Ceram Inter. 2001;27:725–30.CrossRefGoogle Scholar
  43. 43.
    Romero M, Rincon JM, Acosta A. Effect of iron oxide content on the crystallisation of a diopside glass-ceramic glaze. J Eur Ceram Soc. 2002;22:883–90.CrossRefGoogle Scholar
  44. 44.
    Stathis G, Ekonomakou A, Stournaras CJ, Ftikos C. Effect of firing conditions, filler grain size and quartz content on bending strength and properties of sanitaryware porcelain. J Eur Ceram Soc. 2004;24:2357–66.CrossRefGoogle Scholar
  45. 45.
    Capoglu A. A novel low-clay translucent whiteware based on anorthite. J Eur Ceram Soc. 2011;31:321–9.CrossRefGoogle Scholar
  46. 46.
    Senapati U, Carty WM. Porcelain-raw materials, processing, phase evolution, and mechanical behavior. J Am Ceram Soc. 1998;81:3–20.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Zhiyong Xian
    • 1
  • Lingke Zeng
    • 1
  • Xiaosu Cheng
    • 1
  • Hui Wang
    • 1
  1. 1.College of Materials Science and EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations