Journal of Thermal Analysis and Calorimetry

, Volume 122, Issue 2, pp 653–663 | Cite as

Synthesis of rambutan-like MnCo2O4 and its adsorption performance for methyl orange

  • Kaituo Wang
  • Xuehang Wu
  • Wenwei Wu
  • Wen Chen
  • Liqin Qin
  • Xuemin Cui


A hierarchical rambutan-like MnCo2O4 precursor is synthesized by a co-precipitation method in water–ethanol at room temperature. After being calcined at 400 °C in air for 10 min with a heating rate of 1 °C min−1, the precursor MnCo2(C2O4)3·5.54H2O is transformed into the rambutan-like MnCo2O4 microspheres composed of end-connected nanorods, which has a large specific surface area (155 m2 g−1). When evaluated as adsorbent for methyl orange (MO), the rambutan-like MnCo2O4 microspheres show excellent adsorption ability for methyl orange. The adsorption capacity of methyl orange on rambutan-like MnCo2O4 is 185.14 mg g−1 under the conditions of initial MO concentration 12 mg L−1 and pH 2.09. Adsorption kinetics of methyl orange on rambutan-like MnCo2O4 follows the pseudo-second-order kinetic model. The values of adsorption activation energy E a and enthalpy ΔH # are 5.71 ± 0.056 and 9.30 kJ mol−1, respectively. Methyl orange adsorption on rambutan-like MnCo2O4 is an endothermic and physical adsorption process.


Rambutan-like MnCo2O4 Chemical synthesis Methyl orange Adsorption kinetics 



This study was financially supported by the National Nature Science Foundation of China (Grant No. 21161002).


  1. 1.
    Huo YN, Xie ZL, Wang XD, Li HX, Hoang M, Caruso RA. Methyl orange removal by combined visible-light photocatalysis and membrane distillation. Dyes Pigments. 2013;98:106–12.CrossRefGoogle Scholar
  2. 2.
    Derakhshan MS, Moradi O. The study of thermodynamics and kinetics methyl orange and malachite green by SWCNTs, SWCNT–COOH and SWCNT–NH2 as adsorbents from aqueous solution. J Ind Eng Chem. 2014;20:3186–94.CrossRefGoogle Scholar
  3. 3.
    Zhang P, Wang TQ, Qian GR, Wu DS, Frost RL. Removal of methyl orange from aqueous solutions through adsorption by calcium aluminate hydrates. J Colloid Interface Sci. 2014;426:44–7.CrossRefGoogle Scholar
  4. 4.
    Haque E, Jun JW, Jhung SH. Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235). J Hazard Mater. 2011;185:507–11.CrossRefGoogle Scholar
  5. 5.
    Chen H, Zhao J, Wu JY, Dai GL. Isotherm, thermodynamic, kinetics and adsorption mechanism studies of methyl orange by surfactant modified silkworm exuviae. J Hazard Mater. 2011;192:246–54.Google Scholar
  6. 6.
    Kou TY, Wang YZ, Zhang C, Sun JZ, Zhang ZH. Adsorption behavior of methyl orange onto nanoporous core–shell Cu@Cu2O nanocomposite. Chem Eng J. 2013;223:76–83.CrossRefGoogle Scholar
  7. 7.
    Semerjian L, Ayoub GM. High-pH-magnesium coagulation–flocculation in wastewater treatment. Adv Environ Res. 2003;7:389–403.CrossRefGoogle Scholar
  8. 8.
    Ciardelli G, Corsi L, Marucci M. Membrane separation for wastewater reuse in the textile industry. Resour Conserv Recycl. 2000;31:189–97.CrossRefGoogle Scholar
  9. 9.
    Habibi MH, Habibi AH. Photocatalytic degradation of Brilliant Red M5B using four different nanocomposites (ZnFe2O4, porous ZnFe2O4, ZnFe2O4–TiO2, FeTiO3) coated on glass. J Ind Eng Chem. 2014;20:2964–8.CrossRefGoogle Scholar
  10. 10.
    Shirzad-Siboni M, Jafari SJ, Giahi O, Kim I, Lee SM, Yang JK. Removal of acid blue 113 and reactive black 5 dye from aqueous solutions by activated red mud. J Ind Eng Chem. 2014;20:1432–7.CrossRefGoogle Scholar
  11. 11.
    Thinakaran N, Baskaralingam P, Pulikesi M, Panneerselvam P, Sivanesan S. Removal of acid violet 17 from aqueous solutions by adsorption onto activated carbon prepared from sunflower seed hull. J Hazard Mater. 2008;151:316–22.CrossRefGoogle Scholar
  12. 12.
    Wang T, Su J, Jin XY, Chen ZL, Megharaj M, Naidu R. Functional clay supported bimetallic nZVI/Pd nanoparticles used for removal of methyl orange from aqueous solution. J Hazard Mater. 2013;262:819–25.CrossRefGoogle Scholar
  13. 13.
    Guo HX, Chen JH, Weng W, Zheng ZS, Wang DF. Adsorption behavior of Congo red from aqueous solution on La2O3–doped TiO2 nanotubes. J Ind Eng Chem. 2014;20:3081–8.CrossRefGoogle Scholar
  14. 14.
    Vieira MLG, Esquerdo VM, Nobre LR, Dotto GL, Pinto LAA. Glass beads coated with chitosan for the food azo dyes adsorption in a fixed bed column. J Ind Eng Chem. 2014;20:3387–93.CrossRefGoogle Scholar
  15. 15.
    Goscianska J, Marciniak M, Pietrzak R. Mesoporous carbons modified with lanthanum(III) chloride for methyl orange adsorption. Chem Eng J. 2014;247:258–64.CrossRefGoogle Scholar
  16. 16.
    Yao YJ, He B, Xu FF, Chen XF. Equilibrium and kinetic studies of methyl orange adsorption on multiwalled carbon nanotubes. Chem Eng J. 2011;170:82–9.CrossRefGoogle Scholar
  17. 17.
    Tian Y, Wang XF, Pan YF. Simple synthesis of Ni-containing ordered mesoporous carbons and their adsorption/desorption of methylene orange. J Hazard Mater. 2012;213–214:361–8.CrossRefGoogle Scholar
  18. 18.
    Belessi V, Romanos G, Boukos N, Lambropoulou D, Trapalis C. Removal of reactive red 195 from aqueous solutions by adsorption on the surface of TiO2 nanoparticles. J Hazard Mater. 2009;170:836–44.CrossRefGoogle Scholar
  19. 19.
    Lv SS, Chen XG, Ye Y, Yin SH, Cheng JP, Xia MS. Rice hull/MnFe2O4 composite: preparation, characterization and its rapid microwave-assisted COD removal for organic wastewater. J Hazard Mater. 2009;171:634–9.CrossRefGoogle Scholar
  20. 20.
    Hencl V, Mucha P, Orlikova A, Leskova D. Utilization of ferrites for water treatment. Water Res. 1995;29:383–5.CrossRefGoogle Scholar
  21. 21.
    Konicki W, Sibera D, Mijowska E, Lendzion-Bieluń Z, Narkiewicz U. Equilibrium and kinetic studies on acid dye Acid Red 88 adsorption by magnetic ZnFe2O4 spinel ferrite nanoparticles. J Colloid Interface Sci. 2013;398:152–60.CrossRefGoogle Scholar
  22. 22.
    Wu RC, Qu JH, He H, Yu YB. Removal of azo-dye acid red B (ARB) by adsorption and catalytic combustion using magnetic CuFe2O4 powder. Appl Catal B. 2004;48:49–56.CrossRefGoogle Scholar
  23. 23.
    Hou XY, Feng J, Liu XH, Ren YM, Fan ZJ, Wei T, Meng J, Zhang ML. Synthesis of 3D porous ferromagnetic NiFe2O4 and using as novel adsorbent to treat wastewater. J Colloid Interface Sci. 2011;362:477–85.CrossRefGoogle Scholar
  24. 24.
    Hou XY, Feng J, Ren YM, Fan ZJ, Zhang ML. Synthesis and adsorption properties of spongelike porous MnFe2O4. Colloids Surf A. 2010;363:1–7.CrossRefGoogle Scholar
  25. 25.
    Xu JC, Xin PH, Gao YQ, Hong B, Jin HX, Jin DF, Peng XL, Li J, Gong J, Ge HL, Wang XQ. Magnetic properties and methylene blue adsorptive performance of CoFe2O4/activated carbon nanocomposites. Mater Chem Phys. 2014;147:915–9.CrossRefGoogle Scholar
  26. 26.
    Yazdanbakhsh M, Khosravi I, Goharshadi EK, Youssefi A. Fabrication of nanospinel ZnCr2O4 using sol–gel method and its application on removal of azo dye from aqueous solution. J Hazard Mater. 2010;184:684–9.CrossRefGoogle Scholar
  27. 27.
    Irama M, Guo C, Guan Y, Ishfaq A, Liu H. Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres. J Hazard Mater. 2010;181:1039–50.CrossRefGoogle Scholar
  28. 28.
    Kong LB, Lu C, Liu MC, Luo YC, Kang L, Li XH, Walsh FC. The specific capacitance of sol–gel synthesised spinel MnCo2O4 in an alkaline electrolyte. Electrochim Acta. 2014;115:22–7.CrossRefGoogle Scholar
  29. 29.
    Zhu JK, Gao QM. Mesoporous MCo2O4 (M = Cu, Mn and Ni) spinels: structural replication, characterization and catalytic application in CO oxidation. Microporous Mesoporous Mater. 2009;124:144–52.CrossRefGoogle Scholar
  30. 30.
    Wang KT, Wu XH, Wu WW, Hu YM, Liao S. Synthesis of spinel MnCo2O4 by thermal decomposition of carbonates and kinetics of thermal decomposition of precursor. J Supercond Nov Magn. 2014;27:1249–56.CrossRefGoogle Scholar
  31. 31.
    Cao W, Dang Z, Yuan BL, Shen CH, Kan J, Xue XL. Sorption kinetics of sulphate ions on quaternary ammonium-modified rice straw. J Ind Eng Chem. 2014;20:2603–9.CrossRefGoogle Scholar
  32. 32.
    Arias F, Kanti Sen T. Removal of zinc metal ion (Zn2+) from its aqueous solution by kaolin clay mineral: a kinetic and equilibrium study. Colloids Surf A. 2009;348:100–8.Google Scholar
  33. 33.
    Wu HB, Pang H, Lou XW. Facile synthesis of mesoporous Ni0.3Co2.7O4 hierarchical structures for high-performance supercapacitors. Energy Environ Sci. 2013;6:3619–26.CrossRefGoogle Scholar
  34. 34.
    Qiu H, Lv L, Pan BC, Zhang QJ, Zhang WM, Zhang QX. Critical review in adsorption kinetic models. J Zhejiang Univ Sci A. 2009;10:716–24.CrossRefGoogle Scholar
  35. 35.
    Qu R, Wang M, Song R, Sun C, Zhang Y, Sun X, Ji C, Wang C, Yin P. Adsorption kinetics and isotherms of Ag(I) and Hg(II) onto silica gel with functional groups of hydroxyl- or amino-terminated polyamines. J Chem Eng Data. 2011;56:1982–90.CrossRefGoogle Scholar
  36. 36.
    Ho YS, McKay G. Pseudo-second order model for adsorption processes. Process Biochem. 1999;34:451–65.CrossRefGoogle Scholar
  37. 37.
    Ptáček P, Opravil T, Šoukal F, Havlica J, Másilko J, Wasserbauer J. Preparation of dehydroxylated and delaminated talc: Meta-talc. Ceram Int. 2013;39:9055–61.CrossRefGoogle Scholar
  38. 38.
    Vlaev L, Nedelchev N, Gyurova K, Zagorcheva M. A comparative study of non-isothermal kinetics of decomposition of calcium oxalate monohydrate. J Anal Appl Pyrolysis. 2008;81:253–62.CrossRefGoogle Scholar
  39. 39.
    Qin LQ, Gao ML, Wu WW, Ou SQ, Wang KT, Liu B, Wu XH. Co1–xMgxFe2O4 magnetic particles: preparation and kinetics research of thermal transformation of the precursor. Ceram Int. 2014;40:10857–66.CrossRefGoogle Scholar
  40. 40.
    Zhou KW, Wu WW, Li YN, Wu XH, Liao S. Preparation of magnetic nanocrystalline Mn0.5Mg0.5Fe2O4 and kinetics of thermal decomposition of precursor. J Therm Anal Calorim. 2013;114:205–12.Google Scholar
  41. 41.
    Chen Y, Song BH, Li M, Lu L, Xue JM. Fe3O4 nanoparticles embedded in uniform mesoporous carbon spheres for superior high-rate battery applications. Adv Funct Mater. 2014;24:319–26.CrossRefGoogle Scholar
  42. 42.
    Li J, Xiong S, Li X, Qian Y. A facile route to synthesize multiporous MnCo2O4 and CoMn2O4 spinel quasi-hollow spheres with improved lithium storage properties. Nanoscale. 2013;5:2045–54.CrossRefGoogle Scholar
  43. 43.
    Li L, Zhang YQ, Liu XY, Shi SJ, Zhao XJ, Zhang H, Ge X, Cai GF, Gu CD, Wang XL, Tu JP. One-dimension MnCo2O4 nanowire arrays for electrochemical energy storage. Electrochim Acta. 2014;116:467–74.CrossRefGoogle Scholar
  44. 44.
    Zhang Z, Wu ZL, Liu GM. Interfacial adsorption of methyl orange in liquid phase of foam fractionation using dodecyl dimethyl betaine as the collector. J Ind Eng Chem. 2015;. doi: 10.1016/j.jiec.2015.01.027.Google Scholar
  45. 45.
    Wu XH, Zhou KW, Wu WW, Cui XM, Li YN. Magnetic properties of nanocrystalline CuFe2O4 and kinetics of thermal decomposition of precursor. J Therm Anal Calorim. 2013;111:9–16.CrossRefGoogle Scholar
  46. 46.
    Zhang YT, Liu SA, Li Y, Deng DM, Si XJ, Ding YP, He HH, Luo LQ, Wang ZX. Electrospun graphene decorated MnCo2O4 composite nanofibers for glucose biosensing. Biosens Bioelectron. 2015;66:308–15.CrossRefGoogle Scholar
  47. 47.
    Vadivelan V, Vasanth Kumar K. Equilibrium, kinetics, mechanism, and process design for the adsorption of methylene blue onto rice husk. J Colloid Interface Sci. 2005;286:90–100.CrossRefGoogle Scholar
  48. 48.
    Belala Z, Jeguirim M, Belhachemi M, Addoun F, Trouve G. Biosorption of basic dye from aqueous solutions by date stones and palm-trees wastes: kinetic, equilibrium and thermodynamic studies. Desalination. 2011;271:80–7.CrossRefGoogle Scholar
  49. 49.
    Gong R, Ye JJ, Dai W, Yan XY, Hu J, Hu X, Li S, Huang H. Adsorptive removal of methyl orange and methylene blue from aqueous solution with finger-citron-residue-based activated carbon. Ind Eng Chem Res. 2013;52:14297–303.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Kaituo Wang
    • 1
  • Xuehang Wu
    • 1
  • Wenwei Wu
    • 1
    • 2
  • Wen Chen
    • 1
  • Liqin Qin
    • 1
  • Xuemin Cui
    • 1
  1. 1.School of Chemistry and Chemical EngineeringGuangxi UniversityNanningPeople’s Republic of China
  2. 2.Guangxi CollegesUniversities Key Laboratory of Applied Chemistry Technology and Resource DevelopmentNanningPeople’s Republic of China

Personalised recommendations