Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 121, Issue 3, pp 1021–1030 | Cite as

Influence of the nature of the chain breaker on the thermal stability of phthalic anhydride-based polyesters

  • Dorina Modra
  • Gabriela Vlase
  • Paul Albu
  • Constantin Bolcu
  • Titus Vlase
Article

Abstract

This study presents the synthesis of polyesters obtained from phthalic anhydride as acidic components and one mixture of monoethylene glycol and monohydric alcohol (in ratio 1.1:0.15). Molar ratio of the acid component and alcohol component was 1:1.25. n-Propanol, n-butanol, n-octanol and isoamyl alcohol were used as monohydric alcohol. Physicochemical characterization was performed by elemental analysis, FTIR/UATR spectroscopy of polyesters and char, EGA (evolved gas analysis), thermal analysis in synthetic air and in nitrogen atmosphere.

Keywords

Thermal behavior EGA FTIR spectroscopy Polyesters Chain breaker 

Notes

Acknowledgements

This work was supported by POSCCE Grant No. 12PO102418/5124/22.05.2014, SMIS 50328: “New energetic efficient technology for synthesis of polyester copolymers.”

References

  1. 1.
    Wang Y, Meng B, Zhao Q, Qi S. Accelerated ageing tests for evaluations of a durability performance of glass-fiber reinforcement polyester composites. J Mater Sci Technol. 2010;26(6):572–6.CrossRefGoogle Scholar
  2. 2.
    Schauhoff S, Schmidt W. New developments in the production of polytrimethylene terephthalate (PTT). Chem Fibers Int. 1996;46:263–4.Google Scholar
  3. 3.
    Umare SS, Chandure AS, Pandey RA. Synthesis, characterization and biodegradable studies of 1,3-propanediol based polyesters. Polym Degrad Stab. 2007;92:464–79.CrossRefGoogle Scholar
  4. 4.
    Chandure AS, Bhusari GS, Umare SS. Synthesis, characterization, and biodegradation studies of poly(1,4-cyclohexanedimethylene-adipate-carbonate)s. J Polym; 2014. Article ID 547325, p. 11.Google Scholar
  5. 5.
    Díaz A, Katsarava R, Puiggalí J. Review synthesis, properties and applications of biodegradable, polymers derived from diols and dicarboxylic acids: from polyesters to poly(ester amide)s. Int J Mol Sci. 2014;15:7064–123.CrossRefGoogle Scholar
  6. 6.
    Umare SS, Chandure AS, Pandey RA. Synthesis, characterization and biodegradable studies of 1,3-propanediol based polyesters. Int J Mol Sci. 2014;15:7064–123.CrossRefGoogle Scholar
  7. 7.
    Jin HJ, Park JK, Park KH, Kim MN, Yoon JS. Properties of aliphatic polyesters with n-paraffinic side branches. J Appl Polym Sci. 2000;77:547–55.CrossRefGoogle Scholar
  8. 8.
    Almontassir A, Gestí S, Franco L, Puiggalí J. Molecular packing of polyesters derived from 1,4-butanediol and even aliphatic dicarboxylic acids. Macromolecules. 2004;37:5300–9.CrossRefGoogle Scholar
  9. 9.
    Ahn BD, Kim SH, Kim YH, Yang JS. Synthesis and characterization of the biodegradable copolymers from succinic acid and adipic acid with 1,4-butanediol. J Appl Polym Sci. 2001;82:2808–26.CrossRefGoogle Scholar
  10. 10.
    Guimarãesa DH, Brioude MMB, Fiúzaa RP, Sanches A, Boaventuraa APJSJO. Synthesis and characterization of polyesters derived from glycerol and phthalic acid. Mater Res. 2007;10(3):2007–26.Google Scholar
  11. 11.
    Bolcu C, Modra D, Vlase G, Doca N, Mihali C, Vlase T. Synthesis and thermal behaviour of some diisocyanate-silane compounds. J Therm Anal Calorim. 2014;115(1):489–94.CrossRefGoogle Scholar
  12. 12.
    Bolcu C, Vlase G, Vlase T, Albu P, Doca N, Şisu E. Thermal behavior of some polyurethanes reticulated by aminated maltose. J Therm Anal Calorim. 2013;113(3):1409–14.CrossRefGoogle Scholar
  13. 13.
    Vlase T, Bolcu C, Vlase G, Mogos A, Doca N. Thermooxidative stabilization of a MDI Polyol polyisocyanate. J Therm Anal Calorim. 2010;99:973–9.CrossRefGoogle Scholar
  14. 14.
    Albu P, Bolcu C, Vlase G, Doca N, Vlase T. Kinetics of degradation under non-isothermal conditions of a thermooxidative stabilized polyurethane. J Therm Anal Calorim. 2011;105(2):685–9.CrossRefGoogle Scholar
  15. 15.
    Vlase T, Vlase G, Doca N, Iliescu S, Ilia G. Thermo-oxidative degradation of polymers containing phosphorus in the main chain. High Perform Polym. 2010;22(7):863–75.CrossRefGoogle Scholar
  16. 16.
    Vlase T, Doca N, Vlase G, Bolcu C, Borcan F. Kinetics of non-isothermal decomposition of three IRGANOX-type antioxidants. J Therm Anal Calorim. 2008;92:15–8.CrossRefGoogle Scholar
  17. 17.
    Vlase T, Vlase G, Doca N, Ilia G, Fuliaş A. Coupled thermogravimetric-IR techniques and kinetic analysis by non-isothermal decomposition of Cd2+ and Co2+ vinyl-phosphonates. J Therm Anal Calorim. 2009;97:467–72.CrossRefGoogle Scholar
  18. 18.
    Doca N, Vlase G, Vlase T, Ilia G. Thermal behavior of Cd2+ and Co2+ phenyl-vinyl-phosphonates under non-isothermal condition. J Therm Anal Calorim. 2008;94(2):441–5.CrossRefGoogle Scholar
  19. 19.
    Silverstein RM, Clayton Basster G, Morrell T. Spectrometric identification of the compounds, 5th Ed. Wiley; 1995.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Dorina Modra
    • 1
  • Gabriela Vlase
    • 1
  • Paul Albu
    • 1
    • 2
  • Constantin Bolcu
    • 1
  • Titus Vlase
    • 1
  1. 1.Research Center for Thermal Analysis in Environmental ProblemsWest University of TimisoaraTimisoaraRomania
  2. 2.Department of Pharmacy, Faculty of Medicine, Pharmacy and Dental Medicine“Vasile Goldis” West University of AradAradRomania

Personalised recommendations