Journal of Thermal Analysis and Calorimetry

, Volume 122, Issue 2, pp 601–609 | Cite as

On the thermal decomposition of nesquehonite



Among the phases in the MgO–CO2–H2O system, nesquehonite, MgCO3 ·3H2O, attracts particular attention because of its potential application to carbon capture. However, its stability and the reported sequence of phases formed during the course of its thermal decomposition differ between authors and the corresponding decomposition mechanisms find various explanations. To improve the knowledge on the thermal decomposition of nesquehonite, new thermal data are presented and X-ray diffraction was used to follow the evolution of the solid products of decomposition. During thermal decomposition, nesquehonite loses its water below 300–350 °C whereas CO2 is lost above 300–350 °C, but the mechanism of thermal decomposition process is influenced by the choice of experimental conditions. The first loss of water, between ~55 and ~135 °C, results in a partial collapse of the nesquehonite structure and in the formation of a crystalline phase which is referred to as “phase X” (approximately MgCO3·2H2O) and this gradually converts into an amorphous phase upon further heating and water loss. The regeneration of nesquehonite upon rehydration of either “phase X” or the amorphous phase suggests that sufficient structural elements persist throughout the initial stages of decomposition to reconstitute nesquehonite.


Nesquehonite Structure Thermal analysis Decomposition X-ray diffraction 



The authors thank Gulf Organisation for Research and Development for funding.


  1. 1.
    Hill RJ, Canterford JH, Moyle FJ. New data for lansfordite. Mineral Mag. 1982;46:453–7.CrossRefGoogle Scholar
  2. 2.
    Hopkinson L, Kristova P, Rutt K, Cressey G. Phase transitions in the system MgO–CO2–H2O during CO2 degassing of Mg-bearing solutions. Geochim Cosmochim Acta. 2012;76:1–13.CrossRefGoogle Scholar
  3. 3.
    Dell RM, Weller SW. The thermal decomposition of nesquehonite MgCO3·3H2O and magnesium ammonium carbonate MgCO3·(NH4)2CO3·4H2O. Trans Faraday Soc. 1959;55:2203–20.CrossRefGoogle Scholar
  4. 4.
    Ming DW, Franklin WT. Synthesis and characterization of lansfordite and nesquehonite. Soil Sci Soc Am J. 1985;49:1303–8.CrossRefGoogle Scholar
  5. 5.
    Davies PJ, Bubela B. The transformation of nesquehonite into hydromagnesite. Chem Geol. 1973;12:289–300.CrossRefGoogle Scholar
  6. 6.
    Hopkinson L, Rutt K, Cressey G. The transformation of nesquehonite to hydromagnesite in the system CaO–MgO–H2O–CO2: an experimental spectroscopic study. J Geol. 2008;116:387–400.CrossRefGoogle Scholar
  7. 7.
    Akao M, Marumo F, Iwai S. The crystal structure of hydromagnesite. Acta Cryst B. 1974;30:2670–2.CrossRefGoogle Scholar
  8. 8.
    Bender M, Sprague RS. The preparation and structure of magnesium carbonate trihydrate. J Inorg Nucl Chem. 1965;27:1872–3.CrossRefGoogle Scholar
  9. 9.
    Canterford JH, Tsambourakis G, Lambert B. Some observations on the properties of dypingite, Mg5(CO3)4(OH)2·5H2O, and related minerals. Mineral Mag. 1984;48:437–42.CrossRefGoogle Scholar
  10. 10.
    Ballirano P, De Vito C, Mignardi S, Ferrini V. Phase transitions in the Mg–CO2–H2O system and the thermal decomposition of dypingite, Mg5(CO3)4(OH)2·5H2O: implications for geosequestration of carbon dioxide. Chem Geol. 2013;340:59–67.CrossRefGoogle Scholar
  11. 11.
    White WB. Infrared characterization of water and hydroxyl ion in the basic magnesium carbonate minerals. Am Mineral. 1971;56:46–53.Google Scholar
  12. 12.
    Frost RL, Palmer SJ. Infrared and infrared emission spectroscopy of nesquehonite Mg(OH)(HCO3)·2H2O—implications for the formula of nesquehonite. Spectrochim Acta A. 2011;78:1255–60.CrossRefGoogle Scholar
  13. 13.
    Stephan GW, MacGillavry CH. The crystal structure of nesquehonite, MgCO3·3H2O. Acta Cryst B. 1972;28:1031–3.CrossRefGoogle Scholar
  14. 14.
    Giester G, Lengauer CL, Rieck B. The crystal structure of nesquehonite, MgCO3·3H2O, from Lavrion, Greece. Mineral Petrol. 2000;70:153–63.CrossRefGoogle Scholar
  15. 15.
    Ballirano P, De Vito C, Ferrini V, Mignardi S. The thermal behaviour and structural stability of nesquehonite, MgCO3·3H2O, evaluated by in situ laboratory parallel-beam X-ray powder diffraction: new constraints on CO2 sequestration within minerals. J Hazard Mater. 2010;178:522–8.CrossRefGoogle Scholar
  16. 16.
    Coleyshaw EE, Crump G, Griffith WP. Vibrational spectra of the hydrated carbonate minerals ikaite, monohydrocalcite, lansfordite and nesquehonite. Spectrochim Acta A. 2003;59:2231–9.CrossRefGoogle Scholar
  17. 17.
    Hales MC, Frost RL, Martens WN. Thermo-Raman spectroscopy of synthetic nesquehonite—implication for the geosequestration of greenhouse gases. J Raman Spectrosc. 2008;39:1141–9.CrossRefGoogle Scholar
  18. 18.
    Kloprogge JT, Martens WN, Nothdurft L, Duong LV, Webb GE. Low temperature synthesis and characterization of nesquehonite. J Mater Sci Lett. 2003;22:825–9.CrossRefGoogle Scholar
  19. 19.
    Lanas J, Alvarez JI. Dolomitic lime: thermal decomposition of nesquehonite. Thermochim Acta. 2004;421:123–32.CrossRefGoogle Scholar
  20. 20.
    Vagvolgyi V, Hales M, Frost RL, Locke A, Kristof J, Horvath E. Conventional and controlled rate thermal analysis of nesquehonite Mg(HCO3)(OH)·2(H2O). J Therm Anal Calorim. 2008;94:523–8.CrossRefGoogle Scholar
  21. 21.
    Galan I, Glasser FP, Andrade C. Calcium carbonate decomposition. J Therm Anal Calorim. 2013;111:1197–202.CrossRefGoogle Scholar
  22. 22.
    Sawada Y, Uematsu K, Mizutani N, Kato M. Thermal decomposition of hydromagnesite 4MgCO3·Mg(OH)2·4H2O. J Inorg Nucl Chem. 1978;40:979–82.CrossRefGoogle Scholar
  23. 23.
    Sawada Y, Uematsu K, Mizutani N, Kato M. Thermal decomposition of hydromagnesite 4MgCO3·Mg(OH)2·4H2O under different partial pressures of carbon dioxide. Thermochim Acta. 1978;27:45–59.CrossRefGoogle Scholar
  24. 24.
    Sawada Y, Yamaguchi J, Sakurai O, Uematsu K, Mizutani N, Kato M. Thermogravimetric study on the decomposition of hydromagnesite 4MgCO3·Mg(OH)2·4H2O. Thermochim Acta. 1979;33:127–40.CrossRefGoogle Scholar
  25. 25.
    Vagvolgyi V, Frost RL, Hales M, Locke A, Kristof J, Horvath E. Controlled rate thermal analysis of hydromagnesite. J Therm Anal Calorim. 2008;92:893–7.CrossRefGoogle Scholar
  26. 26.
    Beck CW. Differential thermal analysis curves of carbonate minerals. Am Mineral. 1950;35:985–1013.Google Scholar
  27. 27.
    Koga N, Yamane Y. Effect of mechanical grinding on the reaction pathway and kinetics of the thermal decomposition of hydromagnesite. J Therm Anal Calorim. 2008;93:963–71.CrossRefGoogle Scholar
  28. 28.
    Akao M, Iwai S. The hydrogen bonding of hydromagnesite. Acta Cryst B. 1977;33:1273–5.CrossRefGoogle Scholar
  29. 29.
    Akao M, Iwai S. The hydrogen bonding of artinite. Acta Cryst B. 1977;33:3951–3.CrossRefGoogle Scholar
  30. 30.
    Botha A, Strydom CA. DTA and FT-IR analysis of the rehydration of basic magnesium carbonate. J Therm Anal Calorim. 2003;71:987–95.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of AberdeenAberdeenUK

Personalised recommendations