Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 122, Issue 1, pp 123–133 | Cite as

Mechanical activation process for self-propagation high-temperature synthesis of ceramic-based composites

Modeling and optimizing using response surface method
  • M. Farhanchi
  • M. Neysari
  • R. Vatankhah Barenji
  • A. Heidarzadeh
  • R. Taherzadeh Mousavian
Article

Abstract

In this study, the mechanical activation process of the Al–TiO2–H3BO3 thermite mixture was modeled and optimized before self-propagation high-temperature synthesis of Al2O3–TiB2 ceramic composite powders. For this purpose, response surface method in conjunction with full factorial design was conducted for evaluating the experiments and modeling the process. The milling speed and milling time were considered as the process input parameters. In addition, the intensity and temperature of the last exothermic peaks in DSC curves, which correspond to the occurrence of self-propagation high-temperature synthesis process, were chosen as the responses. Analysis of variance was employed for checking the accuracy of the developed models. Furthermore, the effects of milling speed and time on the responses were explored using the developed methods, in detail. The results showed that the models were significant and they predicted the responses accurately. Moreover, the milling time was obtained to be more effective parameter on the responses. The optimized condition for the mechanical activation was 340 rpm and of 17.63 h for milling speed and milling time, respectively.

Keywords

Mechanical activation Response surface method Ball milling Self-propagation high-temperature synthesis Al2O3–TiB2 

References

  1. 1.
    Mousavian RT, Sharafi S, Roshan M, Shariat M. Effect of mechanical activation of reagents’ mixture on the high-temperature synthesis of Al2O3–TiB2 composite powder. J Therm Anal Calorim. 2011;104(3):1063–70.CrossRefGoogle Scholar
  2. 2.
    Mousavian RT, Sharafi S, Shariat M. Microwave-assisted combustion synthesis in a mechanically activated Al–TiO2/H3BO3 system. Int J Refract Met Hard Mater. 2011;29(2):281–8.CrossRefGoogle Scholar
  3. 3.
    Mousavian RT, Sharafi S, Shariat M. Preparation of nano-structural Al2O3–Tib2 in situ composite using mechanically activated combustion synthesis followed by intensive milling. Iran J Mater Sci Eng. 2011;8(2):1–9.Google Scholar
  4. 4.
    Farhadinia F, Sedghi A. Fabrication of Al2O3/(ZrB2+ TiB2) composite using MACS and microwaves. Metall Mat Trans A. 2014;45(7):3125–9.CrossRefGoogle Scholar
  5. 5.
    Deris L, Sharafi S, Akbari G. Effect of milling speed on mechanical activation of Al/ZrO2/H3BO3 system to prepare Al2O3–ZrB2 composite powder. J Therm Anal Calorim. 2014;115(1):401–7.CrossRefGoogle Scholar
  6. 6.
    Merzhanov A. History and recent developments in SHS. Ceram Int. 1995;21(5):371–9.CrossRefGoogle Scholar
  7. 7.
    Merzhanov A. Combustion processes that synthesize materials. Mater Process Technol. 1996;56(1):222–41.CrossRefGoogle Scholar
  8. 8.
    Gennari S, Tamburini UA, Maglia F, Spinolo G, Munir ZA. A new approach to the modeling of SHS reactions: combustion synthesis of transition metal aluminides. Acta Mater. 2006;54(9):2343–51.CrossRefGoogle Scholar
  9. 9.
    Mosleh A, Ehteshamzadeh M, Mousavian RT. Fabrication of an r-Al2Ti intermetallic matrix composite reinforced with α-Al2O3 ceramic by discontinuous mechanical milling for thermite reaction. Int J Miner Metal Mater. 2014;21(10):1037–42.CrossRefGoogle Scholar
  10. 10.
    Paris S, Gaffet E, Bernard F, Munir ZA. Spark plasma synthesis from mechanically activated powders: a versatile route for producing dense nanostructured iron aluminides. Scr Mater. 2004;50(5):691–6.CrossRefGoogle Scholar
  11. 11.
    Korchagin M, Grigor’eva T, Bokhonov B, Sharafutdinov M, Barinova A, Lyakhov N. Solid state combustion in mechanically activated SHS systems. I. effect of activation time on process parameters and combustion product composition. Combust Explos Shock Waves. 2003;39(1):43–50.CrossRefGoogle Scholar
  12. 12.
    Alex TC. An insight into the changes in the thermal analysis curves of boehmite with mechanical activation. J Therm Anal Calorim. 2014;117(1):163–71.CrossRefGoogle Scholar
  13. 13.
    Marinca T, Neamţu B, Chicinaş I, Pascuta P. Influence of mechanical activation time, annealing, and Fe/O ratio on Fe3O4/Fe composites formation from Fe2O3 and Fe powders mixture. J Therm Anal Calorim. 2014;118(2):1245–51.CrossRefGoogle Scholar
  14. 14.
    Kostova B, Petkova V. Effect of high-energy milling and thermal treatment on the solid-phase reactions in apatite–ammonium sulphate system. J Therm Anal Calorim. 2014;116(2):737–46.CrossRefGoogle Scholar
  15. 15.
    Koç S, Toplan N, Yildiz K, Toplan HÖ. Effects of mechanical activation on the non-isothermal kinetics of mullite formation from kaolinite. J Therm Anal Calorim. 2011;103(3):791–6.CrossRefGoogle Scholar
  16. 16.
    Mukherjee A, Krishnamurthy N. Studies on the effect of milling on reduction of niobium pentaoxide with aluminium. J Therm Anal Calorim. 2014;115(1):621–5.CrossRefGoogle Scholar
  17. 17.
    Mousavian RT, Azizi N, Jiang Z, Boostani AF. Effect of Fe2O3 as an accelerator on the reaction mechanism of Al–TiO2 nanothermite system. J Therm Anal Calorim. 2014;117(2):711–9.CrossRefGoogle Scholar
  18. 18.
    Wieczorek-Ciurowa K, Gamrat K, Paryło M, Shirokov JG. Alloy formation in mechanically activated mixtures. J Therm Anal Calorim. 2002;70(1):165–72.CrossRefGoogle Scholar
  19. 19.
    Wieczorek-Ciurowa K, Dulian P, Nosal A, Domagała J. Effects of reagents’ nature on mechanochemical synthesis of calcium titanate. J Therm Anal Calorim. 2010;101(2):471–7.CrossRefGoogle Scholar
  20. 20.
    Box GEP, Wilson KB. On the experimental attainment of optimal conditions. J R Stat Soc. 1951;13:1–45.Google Scholar
  21. 21.
    Heidarzadeh A, Vatankhah Barenji R, Esmaily M, Rahimzadeh Ilkhichi A. Tensile properties of friction stir welds of AA 7020 aluminum alloy. Trans Indian Inst Met. 2015;. doi: 10.1007/s12666-014-0508-2.Google Scholar
  22. 22.
    Azadbeh M, Mohammadzadeh A, Danninger H. Modeling the response of physical and mechanical properties of Cr–Mo prealloyed sintered steels to key manufacturing parameters. Mater Des. 2014;55:633–43.CrossRefGoogle Scholar
  23. 23.
    Chang BP, Akil HM, Affendy MG, Khan A, Nasir RBM. Comparative study of wear performance of particulate and fiber-reinforced nano-ZnO/ultra-high molecular weight polyethylene hybrid composites using response surface methodology. Mater Des. 2014;63:805–19.CrossRefGoogle Scholar
  24. 24.
    Heidarzadeh A, Khodaverdizadeh H, Mahmoudi A, Nazari E. Tensile behavior of friction stir welded AA 6061-T4 aluminum alloy joints. Mater Des. 2012;37:166–73.CrossRefGoogle Scholar
  25. 25.
    Heidarzadeh A, Saeid T. Prediction of mechanical properties in friction stir welds of pure copper. Mater Des. 2013;52:1077–87.CrossRefGoogle Scholar
  26. 26.
    Kha TC, Nguyen MH, Roach PD, Stathopoulos CE. Microencapsulation of Gac oil: optimisation of spray drying conditions using response surface methodology. Powder Technol. 2014;264:298–309.CrossRefGoogle Scholar
  27. 27.
    Rahimzadeh Ilkhichi A, Soufi R, Hussain G, Vatankhah Barenji R, Heidarzadeh A. Establishing mathematical models to predict grain size and hardness of the friction stir-welded AA 7020 aluminum alloy joints. Met Mater Trans B. 2015;46(1):357–65.CrossRefGoogle Scholar
  28. 28.
    Rostamiyan Y, Fereidoon A, Mashhadzadeh AH, Ashtiyani MR, Salmankhani A. Using response surface methodology for modeling and optimizing tensile and impact strength properties of fiber orientated quaternary hybrid nano composite. Compos Part B Eng. 2015;69:304–16.CrossRefGoogle Scholar
  29. 29.
    Hosseini SG, Alavi MA, Ghavi A, Toloti SJH, Agend F. Modeling of burning rate equation of ammonium perchlorate particles over Cu–Cr–O nanocomposites. J Therm Anal Calorim. 2015;119(1):99–109.CrossRefGoogle Scholar
  30. 30.
    Chen G, Xiong K, Peng J, Chen J. Optimization of combined mechanical activation-roasting parameters of titania slag using response surface methodology. Adv Powder Technol. 2010;21(3):331–5.CrossRefGoogle Scholar
  31. 31.
    Hou T-H, Su C-H, Liu W-L. Parameters optimization of a nano-particle wet milling process using the Taguchi method, response surface method and genetic algorithm. Powder Technol. 2007;173(3):153–62.CrossRefGoogle Scholar
  32. 32.
    Stojanović B, Marinković Z, Branković G, Fidančevska E. Evaluation of kinetic data for crystallization of TiO2 prepared by hydrolysis method. J Therm Anal Calorim. 2000;60:595–604.CrossRefGoogle Scholar
  33. 33.
    Georgieva V, Zvezdova D, Vlaev L. Non-isothermal kinetics of thermal degradation of chitin. J Therm Anal Calorim. 2013;111(1):763–71.CrossRefGoogle Scholar
  34. 34.
    Montgomery DC. Design and analysis of experiments. 5th ed. New York: Wiley; 2001.Google Scholar
  35. 35.
    Heidarzadeh A, Saeid T, Khodaverdizadeh H, Mahmoudi A, Nazari E. Establishing a mathematical model to predict the tensile strength of friction stir welded pure copper joints. Metal Mater Trans B. 2013;44(1):175–83.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • M. Farhanchi
    • 1
  • M. Neysari
    • 1
  • R. Vatankhah Barenji
    • 2
  • A. Heidarzadeh
    • 3
  • R. Taherzadeh Mousavian
    • 4
  1. 1.Department of Metallurgy, Zanjan BranchIslamic Azad UniversityZanjanIran
  2. 2.Department of Industrial EngineeringHacettepe UniveristyAnkaraTurkey
  3. 3.Faculty of EngineeringAzarbaijan Shahid Madani UniversityTabrizIran
  4. 4.Faculty of Materials EngineeringSahand University of TechnologyTabrizIran

Personalised recommendations