Skip to main content
Log in

Thermal analysis of meat and meat products

A review

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The application of thermal analysis to meat products, like all materials, is governed by energy transfer, from which invaluable information on thermodynamics of processes is obtained. Various meat systems have been analyzed with different success ratios. Proteins in meat formed the key area of interest due to their effect on product quality, shelf life, functionality and also their ability to interact with other components. Initially success rates were low owing to lack of sensitivity, results with complex curves, complications in interpretation and a large number of factors affecting the biological system. Later with developments in instrumentation and computer models for better resolution and reproducibility, wider horizons could be covered with easy solutions to complex results. Though thermal analysis has been used exhaustively in meat, research in this area has become stagnant and new areas are being left untouched. This review emphasizes the importance of thermal analysis in the meat industry and also the need to use more advanced equipment for better understanding of the biological changes occurring in muscle during processing and storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alvarado JDD. Specific heat of dehydrated pulps of fruits. J Food Process Eng. 1991;14(3):189–96.

    Article  Google Scholar 

  2. Rizvi SSH, Singh RK, Hotchkiss JH, Heldman DR, Leung H. Research needs in food engineering, processing, and packaging. Food Technol. 1993;47:26s–35s.

    Google Scholar 

  3. Ozawa T. Thermal analysis—Review and prospect. Thermochim Acta. 2000;355:35–42.

    Article  CAS  Google Scholar 

  4. Cheng SZ, Li CY, Calhoun BH, Zhu L, Zhou WW. Thermal analysis: the next two decades. Thermochim Acta. 2000;355(1):59–68.

    Article  CAS  Google Scholar 

  5. Mackenzie RC, Mitchell BD. Differential thermal analysis. A review. Analyst. 1962;87(1035):420–34.

    Article  CAS  Google Scholar 

  6. Ma CY, Harwalkar VR. Thermal analysis of food proteins. Adv Food Nutr Res. 1991;35:317–66.

    Article  CAS  Google Scholar 

  7. Connolly M, Tobias B. Analysis of thermoset curve by dynamic mechanical, dielectric, and calorimetric methods. Am Lab. 1992; 24(1): 38, 40–42.

  8. DiVito MP, Fielder KJ, Curran GH, Feder MS. Recent advances in routine thermal analysis instrumentation. Am Lab. 1992; 24(1): 30, 32, 34–36.

  9. ASHRAE. ASHRAE handbook-fundamentals. New York: The American Society of Heating, Refrigerating and Air Conditioning Engineers; 1985.

    Google Scholar 

  10. Polley SL, Snyder OP, Kotnour P. A compilation of thermal properties of foods. Food Technol. 1980; 34 (11): 76–80, 82–84, 86–88, 90–92, 94.

  11. Sweat VE. Thermal properties of foods. In: Rao MA, Rizvi SSH, editors. Engineering properties of foods. 2nd ed. New York: Marcel Dekker Inc; 1995. p. 99–167 Chapter 4.

    Google Scholar 

  12. Plotnikov VV, Brandts JF, Brandts JM. U.S. Patent No. 6,869,214. 2005; Washington, DC: U.S. Patent and Trademark Office.

  13. Wang L, Zhao Y, Ng E, Lin Q. A MEMS differential calorimeter for biomolecular characterization. In: Micro electro mechanical systems, 2005. MEMS 2005. 18th IEEE international conference. 2005; 814–817. IEEE.

  14. Danley RL. Infrared heated differential scanning calorimeter. U.S. Patent No. 8,087,821. 2012; Washington, DC: U.S. Patent and Trademark Office.

  15. Vlassak JJ, McCluskey PJ. Parallel nano-differential scanning calorimetry. U.S. Patent 2007 286 769 A1. 2007.

  16. Holland BJ, Atkinson JR, Hay JN. Design and development in self-reference differential scanning calorimetry. J Therm Anal Calorim. 2002;69:371–85.

    Article  CAS  Google Scholar 

  17. Mathota VBF, Vanden Poel G, Pijpers TFJ. Benefits and potentials of high performance differential scanning calorimetry (HPer DSC). In: Brown M, Gallagher P, editors. Handbook of thermal analysis and calorimetry, vol. 5. The Netherlands: Elsevier; 2007. p. 269–97.

    Google Scholar 

  18. Reading M. Method and apparatus for gas flow modulated differential scanning calorimetry. US Patent No. 5,624,187. 29. 1997.

  19. Cannon JE, Morgan JB, Heavner J, McKeith FK, Smith GC, Meeker DL. Pork quality audit: a review of the factors influencing pork quality. J Muscle Foods. 1995;6:369–402.

    Article  Google Scholar 

  20. Barbut S, Findlay C. Influence of sodium, potassium and magnesium chloride on thermal properties of beef muscle. J Food Sci. 1991;56:180–2.

    Article  CAS  Google Scholar 

  21. Samejima K, Ishioroshi M, Yasui T. Scanning calorimetric studies on the thermal denaturation of myosin and its sub fragments. Agric Biol Chem. 1983;47:2373–9.

    Article  CAS  Google Scholar 

  22. King NL, Harris PV. Heat-induced tenderization of meat by endogenous carboxyl proteases. Meat Sci. 1982;6:137–48.

    Article  CAS  Google Scholar 

  23. Martens H, Stabursvik E, Martens M. Texture and color changes in meat during cooking related to thermal denaturation of muscle proteins. J Textural Stud. 1982;13:291–309.

    Article  Google Scholar 

  24. Seuss IE, Pospiech E, Honikel KO. Causes of cooking loss on heating of meat. In: Proceedings of the 32nd European meeting of meat research workers. 1986; 4: 143–146.

  25. Saadoun A, Cabrera MC. A review of the nutritional content and technological parameters of indigenous sources of meat in South America. Meat Sci. 2008;80:570–81.

    Article  CAS  Google Scholar 

  26. Demirel G, Ozpinar H, Nazli B, Keser O. Fatty acids of lamb meat from two breeds fed different forage: concentrate ratio. Meat Sci. 2006;72(2):229–35.

    Article  CAS  Google Scholar 

  27. Raemy A, Lambelet P. Thermal behavior of foods. Thermochim Acta. 1991;193:417–39.

    Article  CAS  Google Scholar 

  28. Wright DJ, Leach IB, Wilding P. Differential scanning calorimetric studies of muscle and its constituent proteins. J Sci Food Agric. 1977;28(6):557–64.

    Article  CAS  Google Scholar 

  29. Park JW, Lanier TC. Calorimetric changes during development of rigor mortis. J Food Sci. 1988;53(1312–1314):1372.

    Google Scholar 

  30. Hamm R, Deatherage FE. Changes in hydration solubility and charges of muscle proteins during heating of meat. Food Res. 1960;25:587.

    Article  CAS  Google Scholar 

  31. Bouton PE, Harris PV, Shorthose WR. Dimensional changes in meat during cooking. J Texture Stud. 1976;7:179–92.

    Article  Google Scholar 

  32. Bowers JA, Craig JA, Kropf DH, Tucker TJ. Flavor, color and other characteristics of beef longissimus muscle heated to seven internal temperatures between °C and 85 °C. J Food Sci. 1987;52:533–6.

    Article  Google Scholar 

  33. Stabursvik E, Fretheim K, Froystein T. Myosin denaturation in pale, and exudative (PSE) porcine muscle tissue as studied by differential scanning calorimetry. J Sci Food Agric. 1983;35(2):240–4.

    Article  Google Scholar 

  34. Thorarinsdottir KA, Arason S, Geirsdottir M, Bogason S, Kristbergsson K. Changes in myofibrillar proteins during processing of salted cod (Gadus morhua) as determined by electrophoresis and differential scanning calorimetry. Food Chem. 2002;77:377–85.

    Article  CAS  Google Scholar 

  35. Findlay CJ, Parkin KL, Stanley DW. Differential scanning calorimetry can determine kinetics of thermal denaturation of beef muscle proteins. J Food Biochem. 1986;10(1):1–15.

    Article  CAS  Google Scholar 

  36. Stabursvik E, Martens H. Thermal denaturation of proteins in post rigor muscle tissue as studied by differential scanning calorimetry. J Sci Food Agric. 1980;31(10):1034–42.

    Article  CAS  Google Scholar 

  37. Wright D, Winding P. Differential scanning calorimetric study of muscle and its proteins: myosin and its subfragments. J Sci Food Agric. 1984;35(3):357–71.

    Article  CAS  Google Scholar 

  38. Ledward DA, Chizzolini R, Lawrie RA. The effect of extraction, animal age and postmortem storage on tendon collagen. A differential scanning calorimetric study. J Food Technol. 1975;10:349–54.

    Article  Google Scholar 

  39. Hellauer H, Winkler R. Denaturation of collagen fibers in NaI, NaCl and water of different pH values as studied by differential scanning calorimetric measurements. Connect Tissue Res. 1975;3:227–35.

    Article  CAS  Google Scholar 

  40. Ledward DA, Lawrie RA. A note on the dependence of meat texture on the temperature of measurement. J Food Sci Agric. 1975;26:691–5.

    Article  Google Scholar 

  41. Martens H, Vold E. DSC studies of muscle tissue protein denaturation. In: congress documentation; proceedings of the European meeting of meat research workers. 1976; Vol. 1976.

  42. Kijowski JM, Mast MG. Thermal properties of proteins in chicken broiler tissues. J Food Sci. 1988;53:363–6.

    Article  CAS  Google Scholar 

  43. Xiong YL, Brekke CJ, Leung HK. Thermal denaturation of muscle proteins from different species and muscle types as studied by differential scanning calorimetry. Can Inst Food Sci Technol J. 1987;20:357–62.

    Article  Google Scholar 

  44. Murphy RY, Marks BP, Marcy JA. Apparent specific heat of chicken breast patties and their constituent proteins by differential scanning calorimetry. J Food Sci. 1998;63(1):88–91.

    Article  CAS  Google Scholar 

  45. Demopoulos CA, Antonopoulou S, Andrikopoulos NK, Kapoulas VM. Isolation and complete separation of lipids from natural sources. J Liq Chromatogr Relat Technol. 1996;19(4):521–35.

    Article  CAS  Google Scholar 

  46. Yılmaz MT, Karakaya M. Thermal analysis of lipids isolated from various tissues of sheep fats. J Therm Anal Calorim. 2010;101(1):403–9.

    Article  CAS  Google Scholar 

  47. Skala D, Milovanović L, Ranić M, Katsikas L, Bastić M. The thermal analysis of lipids isolated from various tissues of deers and does. J Therm Anal. 1997;49(2):869–77.

    Article  CAS  Google Scholar 

  48. van Aken GA, Ten Grotenhuis E, Van Langevelde AJ, Schenk H. Composition and crystallization of milk fat fractions. J Am Oil Chem Soc. 1999;76(11):1323–31.

    Article  Google Scholar 

  49. Milovanović LM, Popović I, Skalać D, Saićicć S. Thermogravimetric analysis of the total lipids extracted from the fatty tissue of fallow deer (Cervus Dama dama L). J Serbian Chem Soc. 2006;71(12):1281–88.

  50. Teixeira GA, Maia AS, Rosenhaim R, Santos IM, Souza AL, Souza AG, Queiroz N. Thermo-oxidative decomposition of biodiesel samples obtained from mixtures of beef tallow, soybean oil, and babassu oil. J Therm Anal Calorim. 2011;106(2):569–74.

    Article  CAS  Google Scholar 

  51. Ramalho EFSM, Santos IMG, Maia AS, Souza AL, Souza AG. Thermal characterization of the poultry fat biodiesel. J Therm Anal Calorim. 2011;106(3):825–9.

    Article  CAS  Google Scholar 

  52. Fernandez-Martin F, Jimenez Colmenero F. Pressure/temperature processing of low and high fat frankfurters: denaturation effects on the proteins. Proceedings 44th international congress of meat science and technology II. 1998; 546–547.

  53. Warriss PD. Meat science: an introductory text. Wallingford: CAB-International; 2000.

    Google Scholar 

  54. Barbut S, Zhang L, Marcone M. Effects of pale, normal and dark chicken breast meat on microstructure, extractable proteins, and cooking of marinated fillets. Poult Sci. 2005;84:797–802.

    Article  CAS  Google Scholar 

  55. Swatland HJ. How pH causes paleness or darkness in chicken breast meat. Meat Sci. 2008;80:396–400.

    Article  CAS  Google Scholar 

  56. Viljoena HF, de Kocka HL, Webb EC. Consumer acceptability of dark, firm and dry (DFD) and normal pH beef steaks. Meat Sci. 2002;61:181–5.

    Article  Google Scholar 

  57. Bartos L, Franc C, Rehák D, Stípková L. A practical method to prevent dark-cutting (DFD) in beef. Meat Sci. 1993;34:275–82.

    Article  CAS  Google Scholar 

  58. Kreikemeier KK, Unruh JA, Eck TP. Factors affecting the occurrence of dark-cutting beef and selected carcass traits in finished beef cattle. J Anim Sci. 1998;76:388–95.

    CAS  Google Scholar 

  59. Mounier L, Dubroeucq H, Andanson S, Veissier I. Variations in meat pH of beef bulls in relation to conditions of transfer to slaughter and previous history of the animals. J Anim Sci. 2006;84:1567–76.

    CAS  Google Scholar 

  60. Stabursvik E, Fretheim K, Froystein T. Myosin denaturation in pale, soft, and exudative (PSE) porcine muscle tissue as studied by differential scanning calorimetry. J Sci Food Agric. 1984;35:240–4.

    Article  CAS  Google Scholar 

  61. Borzuta K, Borys A, Grześkowiak E, Wajda S, Strzelec ki J, Lisiak DX. Variability of slaughter value and meat quality of fatteners slaughtered in summer of 2002. Roczn. IPMiT. 1984;40:5–11.

    Google Scholar 

  62. Voutila L, Mullen AM, Allen P, Troy D, Puolanne E. Thermal stability of connective tissue and meat quality of loose structured porcine semimembranosus muscles. Maataloustieteen Päivät. 2006.

  63. Xiong YL, Brekke CJ. Thermal transitions of salt-soluble proteins from pre- and postrigor chicken muscles. J Food Sci. 1990;55(1540–1543):1570.

    Google Scholar 

  64. Whiting RC, Richards JF. Can Inst Food Sci Technol J. 1975;8:168.

    Article  Google Scholar 

  65. Drăghici O. Determination by DSC analysis of the influence of pH on meat proteins. J Agroaliment Process Technol. 2011;17(4):466–8.

    Google Scholar 

  66. Mirsky AE. The change in state of the proteins of muscle in rigor. J Gen Physiol. 1936;19:559–71.

    Article  CAS  Google Scholar 

  67. Feiner G. Meat products handbook: practical science and technology. Woodhead Publishing series in food science, technology and nutrition; 2006.

  68. Winger RJ, Pope CG. Osmotic properties of post-rigor beef muscle. Meat Sci. 1980–1981; 5: 355–369.

  69. Geesink GH, Koohmaraie M. Postmortem proteolysis and calpain/calpastatin activity in callipyge and normal lamb biceps femoris during extended postmortem storage. J Anim Sci. 1999;77:1490–501.

    CAS  Google Scholar 

  70. Huff-Lonergan E, Lonergan SM. Postmortem mechanisms of meat tenderization: the roles of the structural proteins and the calpain system. In: Xiong YL, Ho CT, Shahidi F, editors. Quality attributes of muscle food. New York: Kluwer Academic/Plenum Publishers; 1999. p. 229–51.

    Chapter  Google Scholar 

  71. Martinaud A, Mercier Y, Marinova P, Tassy C, Gatellier P, Renerre M. Comparison of oxidative processes on myofibrillar proteins from beef during maturation and by different model oxidation systems. J Agric Food Chem. 1997;45:2481–7.

    Article  CAS  Google Scholar 

  72. Offer G, Knight P. The structural basis of water-holding capacity in meat. Part 1: general principles and water uptake in meat processing. In: Lawrie R, editor. Developments in meat science, vol. 4. New York: Elsevier Applied Science; 1988. p. 61–171.

    Google Scholar 

  73. Offer G, Knight P. The structural basis of water-holding capacity in meat. Part 2: drip losses. In: Lawrie R, editor. Developments in meat science, vol. 4. London: Elsevier Science Publications; 1988. p. 173–243.

    Google Scholar 

  74. Savage AWJ, Warriss PD, Jolley PD. The amount and composition of the proteins in drip from stored pig meat. Meat Sci. 1990;27:289–303.

    Article  CAS  Google Scholar 

  75. Offer G, Trinick J. On the mechanism of water holding in meat: the swelling and shrinking of myofibrils. Meat Sci. 1983;8:245–381.

    Article  CAS  Google Scholar 

  76. Quinn JR, Raymond DP, Harwalkar VR. Differential scanning calorimetry of meat proteins as affected by processing treatment. J Food Sci. 1980;45:1146–9.

    Article  CAS  Google Scholar 

  77. Graiver N, Pinotti A, Califano A, Zaritzky N. Diffusion of sodium chloride in pork tissue. J Food Eng. 2006;77(4):910–8.

    Article  CAS  Google Scholar 

  78. Findlay CJ, Stanley DW. Differential scanning calorimetry of beef muscle: influence of postmortem conditioning. J Food Sci. 1984;49(6):1513–6.

    Article  CAS  Google Scholar 

  79. Xiong YL. Structure-function relationships of muscle proteins. In: Damodaran S, Paraf A, editors. Food proteins and their applications. USA: CRC Press; 1997.

  80. Oda T, Makino K, Yamashita I, Namba K, Maéda Y. Distinct structural changes detected by X-ray fiber diffraction in stabilization of F-actin by lowering pH and increasing ionic strength. Biophys J. 2001;80(2):841–51.

    Article  CAS  Google Scholar 

  81. Aktas N, Kaya M. Detection of beef body fat and margarine in butterfat by differential scanning calorimetry. J Therm Anal Calorim. 2001;66:795–801.

    Article  CAS  Google Scholar 

  82. Froning GW. Effect of various additives on the binding properties of chicken meat. Poult Sci. 1966;45:185.

    Article  CAS  Google Scholar 

  83. Kijowski JM, Mast MGE. Effect of sodium chloride and phosphates on the thermal properties of chicken meat proteins. J Food Sci. 1988b; 53(2): 367–370, 387.

  84. Tomaszewska-Gras J, Konieczny PA. DSC study on the effect of marination on the stability of skin collagen from chicken wings. Acta Sci Pol Technol Aliment. 2010;9(4):413–23.

    CAS  Google Scholar 

  85. Bendall JR, Restall DJ. The cooking of single myofibrils, small myofibril bundles and muscle strip from beef M. psoas and M. sternomandibularis muscles at varying heating rates and temperatures. Meat Sci. 1983;8:93–117.

    Article  CAS  Google Scholar 

  86. Stanley DW, Swatland HJ. The microstructure of muscle tissue—A basis for meat texture measurement. J Texture Stud. 1976;7(1):65–75.

    Article  Google Scholar 

  87. Borchardt HJ, Daniels F. The application of differential analysis to the study of reaction kinetics. J Am Chem Soc. 1956;79:41–6.

    Article  Google Scholar 

  88. Findlay CJ, Stanley DW, Gullett EA. Thermomechanical properties of beef muscle. Meat Sci. 1986;22:57–70.

    Article  Google Scholar 

  89. Bailey AJ. Recent advances in the chemistry of meat. London: The Royal Society of Chemistry; 1984.

    Google Scholar 

  90. Fukazawa T, Hashimoto Y, Yasui T. Effect of storage conditions on some physicochemical properties in experimental sausage prepared from fibrils. J Food Sci. 1961;26:331–6.

    Article  CAS  Google Scholar 

  91. Fukazawa T, Hashimoto Y, Yasui T. Effect of some proteins on the binding quality of an experimental sausage. J Food Sci. 1961;26:541–9.

    Article  Google Scholar 

  92. Fukazawa T, Hashimoto Y, Yasui T. The relationship between the components of myofibrillar protein and the effect of various phosphates that influence the binding quality of sausage. J Food Sci. 1961;26:550–5.

    Article  CAS  Google Scholar 

  93. Samejima K, Hashimoto Y, Yasui T, Fukazawa T. Heat gelling properties of myosin, actin, actomyosin and myosin-subunits in a saline model system. J Food Sci. 1969;34:242–5.

    Article  CAS  Google Scholar 

  94. Yasui T, Fukazawa T, Takahashi K, Sakanishi M, Hashimoto Y. Specific interaction of inorganic polyphosphates with myosin B. J Agric Food Chem. 1964;12:399–404.

    Article  CAS  Google Scholar 

  95. Hermansson AM, Langton M. Filamentous structures of bovine myosin in diluted suspensions and gels. J Sci Food Agric. 1988;42:355–69.

    Article  CAS  Google Scholar 

  96. Hamm R, Grabowska J. Proteinlö slichkeit und Wasserbindung unter den in Brühwurstbräten gegebenen Bedingungen. Die Fleischwirtschaft. 1978;58:1345–7.

    CAS  Google Scholar 

  97. Yasui T, Ishioroshi M, Samejima K. Heat-induced gelation of myosin in the presence of actin. J Food Biochem. 1980;4(2):61–78.

    Article  CAS  Google Scholar 

  98. Doerscher DR, Briggs JL, Lonergan SM. Effects of pork collagen on thermal and viscoelastic properties of purified myofibrillar protein gels. Meat Sci. 2003;66:181–8.

    Article  CAS  Google Scholar 

  99. Fretheim K, Egelandsdal B, Harbitz O, Samejima K. Slow lowering of pH induces gel formation of myosin. Food Chem. 1985;18:169–78.

    Article  CAS  Google Scholar 

  100. Fernández-Martın F, Cofrades S, Carballo J, Jiménez-Colmenero F. Salt and phosphate effects on the gelling process of pressure/heat treated pork batters. Meat Sci. 2002;61(1):15–23.

    Article  Google Scholar 

  101. Townsend WE, Ackerman SA, Witnauer LP, Palm WE, Swift CE. Effect of types and level of fat and rates and temperature of comminution on the processing and characteristics of frankfurters. J Food Sci. 1971;36:261–5.

    Article  CAS  Google Scholar 

  102. Whiting RC. Ingredients and processing factors that control muscle protein functionality. Food Technol. 1988;42(4):104–14.

    CAS  Google Scholar 

  103. Park J, Rhee KS, Keeton JT, Rhee KC. Properties of low-fat frankfurters containing monounsaturated and omega-3 polyunsaturated oils. J Food Sci. 1989;54(3):500–4.

    Article  CAS  Google Scholar 

  104. Bater B, Maurer AJ. Effects of fat source and final comminution temperature on fat particle dispersion, emulsion stability, and textural characteristics of turkey frankfurters. Poult Sci. 1991;70:1424–9.

    Article  Google Scholar 

  105. Barreto G, Carballo J, Fernandez-Martín F, Colmenero FJ. Thermal gelation of meat batters as a function of type and level of fat and protein content. Zeitschrift für Lebensmittel-Untersuchung und Forschung. 1996;202(3):211–4.

    Article  CAS  Google Scholar 

  106. Doerscher DR, Briggs JL, Lonergan SM. Effects of pork collagen on thermal and viscoelastic properties of purified porcine myofibrillar protein gels. Meat Sci. 2004;66(1):181–8.

    Article  CAS  Google Scholar 

  107. Westphalen AD, Briggs JL, Lonergan SM. Influence of pH on rheological properties of porcine myofibrillar protein during heat induced gelation. Meat Sci. 2005;70(2):293–9.

    Article  CAS  Google Scholar 

  108. Ahmed J, Ramaswamy HS. Dynamic rheology and thermal transitions in meat-based strained baby foods. J Food Eng. 2007;78(4):1274–84.

    Article  Google Scholar 

  109. Samejima K, Ishioroshi M, Yasui T. Relative roles of the head and tail portions of the molecule in heat-induced gelation of myosin. J Food Sci. 1981;46(5):1412–8.

    Article  CAS  Google Scholar 

  110. Sano T, Noguchi SF, Tsuchiya T, Matsumoto JJ. Dynamic viscoelastic behavior of natural actomyosin and myosin during thermal gelation. J Food Sci. 1988;53(3):924–8.

    Article  CAS  Google Scholar 

  111. Ensor SA, Sofos JN, Schmidt GR. Differential scanning calorimetric studies of meat protein alginate mixtures. J Food Sci. 1991;56(1):175–9.

    Article  CAS  Google Scholar 

  112. Shand PJ, Sofos JN, Schmidt GR. Differential scanning calorimetry of beef/kappa-carrageenan mixtures. J Food Sci. 1994;59(4):711–5.

    Article  CAS  Google Scholar 

  113. DeFreitas Z, Sebranek JG, Olson DG, Carr JM. Carrageenan effects on thermal stability of meat proteins. J Food Sci. 1997;62(3):544–7.

    Article  CAS  Google Scholar 

  114. Donatus ENA, Xiong YL. Effects of carrageenan on thermal stability of proteins from chicken thigh and breast muscles. Food Res Int. 2001;34:247–53.

    Article  Google Scholar 

  115. Irie M. Evaluation of porcine fat with fiber-optic spectroscopy. J Anim Sci. 1999;77:2680–3.

    CAS  Google Scholar 

  116. Irie M, Swatland HJ. Assessment of porcine fat quality by fiber-optic spectrophotometry. Asian-Australas J Anim Sci. 1992;75:753–6.

    Article  Google Scholar 

  117. Keller G, Lavigne F, Loisel C, Ollivon M, Bourgaux C. Investigation of the complex thermal behavior of fats. J Therm Anal Calorim. 1996;47(5):1545–65.

    Article  CAS  Google Scholar 

  118. Loisel C, Keller G, Lecq G, Bourgaux C, Ollivon M. Phase transitions and polymorphism of cocoa butter. J Am Oil Chem Soc. 1998;75(4):425–39.

    Article  CAS  Google Scholar 

  119. Wong NP. Fundamentals of dairy chemistry. 3rd ed. Gaithersburg: Aspen Publishers; 1999. p. 779.

    Google Scholar 

  120. Saeed S, Fawthrop SA, Howell NK. Electron spin resonance (ESR) study on free radical transfer in fish lipid–protein interaction. J Sci Food Agric. 1999;79(13):1809–16.

    Article  CAS  Google Scholar 

  121. Milovanović LM, Popović I, Ranić MR, Saičić S, Skala D, Antonović D. Total lipids of the intramuscular tissue of fallow deer. J Therm Anal Calorim. 2007;89(3):929–34.

    Article  CAS  Google Scholar 

  122. Saeed S, Howell NK. Rheological and differential scanning calorimetry studies on structural and textural changes in frozen Atlantic mackerel (Scomber scombrus). J Sci Food Agric. 2004;84(10):1216–22.

    Article  CAS  Google Scholar 

  123. Marikkar JMN, Lai OM, Ghazali HM, Man YC. Detection of lard and randomized lard as adulterants in refined-bleached-deodorized palm oil by differential scanning calorimetry. J Am Oil Chem Soc. 2001;78(11):1113–9.

    Article  CAS  Google Scholar 

  124. de Man JM. Functionality requirements of fats and oils for food application, presented at MOSTA Tech-In. Recent advances in the sciences of oils and fats. 1999.

  125. Yılmaz MT, Karakaya M, Aktaş N. Composition and thermal properties of cattle fats. Eur J Lipid Sci Technol. 2010;112(3):410–6.

    Article  CAS  Google Scholar 

  126. Marikkar JMN, Lai OM, Ghazali HM. Chen Man YB. Compositional and thermal analysis of RBD palm oil adulterated with lipase-catalyzed interesterified lard. Food Chem. 2002;76:249–58.

    Article  CAS  Google Scholar 

  127. Marikkar JMN, Ghazali HM, Chen Man YB, Lai OM. Differential scanning calorimetric analysis for determination of some animal fats as adulterants in palm olein. J Food Lipids. 2003;10:63–79.

    Article  CAS  Google Scholar 

  128. Coni E, Di Pasquale M, Coppolelli P, Bocca A. Detection of animal fats in butter by differential scanning calorimetry: a pilot study. J Am Oil Chemists’ Soc. 1994;71(8):807–10.

    Article  CAS  Google Scholar 

  129. Marikkar JMN, Ghazali HM, Long K, Lai OM. Lard uptake and its detection in selected food products deep-fried in lard. Food Res Int. 2003;36:1047–60.

    Article  CAS  Google Scholar 

  130. Ikeuchi Y, Ito T, Fukazawa T. A kinetic analysis of thermal denaturation of F-actin. Int J Biochem. 1981;13:1065–9.

    Article  CAS  Google Scholar 

  131. Chiu J, Fair PG. Determination of thermal conductivity by differential scanning calorimetry. Thermochim Acta. 1979;34(2):267–73.

    Article  CAS  Google Scholar 

  132. Wagner JR, Anon MC. Denaturation kinetics of myofibrillar proteins in bovine muscle. J Food Sci. 1985;50(6):1547–50.

    Article  CAS  Google Scholar 

  133. Kajitani S, Fukuoka M, Sakai N. Kinetics of thermal denaturation of protein in cured pork meat. Jpn J Food Eng. 2011;12(1):19–26.

    Google Scholar 

  134. Mortensen M, Andersen HJ, Engelsen SB, Bertram HC. Effect of freezing temperature, thawing and cooking rate on water distribution in two pork qualities. Meat Sci. 2006;72(1):34–42.

    Article  Google Scholar 

  135. Ngapo TM, Babare IH, Reynolds J, Mawson RF. Freezing and thawing rate effects on drip loss from samples of pork. Meat Sci. 1999;53(3):149–58.

    Article  CAS  Google Scholar 

  136. Do GS, Sagara Y, Tabata M, Kudoh KI, Higuchi T. Three-dimensional measurement of ice crystals in frozen beef with a micro-slicer image processing system. Int J Refrig. 2004;27(2):184–90.

    Article  Google Scholar 

  137. Bevilacqua AE, Zaritzky NE. Ice morphology in frozen beef. Food Technol. 1980;15:589–97.

    Article  Google Scholar 

  138. Bertram HC, Andersen RH, Andersen HJ. Development in myofibrillar water distribution of two pork qualities during 10-month freezer storage. Meat Sci. 2007;75(1):128–33.

    Article  CAS  Google Scholar 

  139. Sawyer JT, Baublits RT, Apple JK, Meullenet JF, Johnson ZB, Alpers TK. Lateral and longitudinal characterization of color stability, instrumental tenderness, and sensory characteristics in the beef semimembranosus. Meat Sci. 2007;75(4):575–84.

    Article  CAS  Google Scholar 

  140. Meléndez-Pérez R, Arjona-Román JL, Velázquez-Castillo RR, Méndez-Albores A, Vázquez-Durán A. On the thermal properties of frozen, refrozen and freeze drying porcine Logissimusdorsi. J Anim Vet Adv. 2011;10(22):2956–60.

    Google Scholar 

  141. Mietsch F, Halász A, Farkas J. Untersuchung über Ä nderungen von Fleischproteinen während der gefrierlagung. Die Nahrung. 1994;38:47–52.

    Article  CAS  Google Scholar 

  142. Aktaş N, Tülek Y, Gökalp HY. Determination of differences in free and bound water contents of beef muscle by DSC under various freezing conditions. J Therm Anal. 1997;50(4):617–24.

    Article  Google Scholar 

  143. Aktas N, Tülek Y, Gökalp HY. Determination of freezable water content of beef semimembranous muscle DSC study. J Therm Anal Calorim. 1997;48(2):259–66.

    Article  CAS  Google Scholar 

  144. Fernández-Martín F, Otero L, Solas MT, Sanz PD. Protein denaturation and structural damage during high-pressure-shift freezing of porcine and bovine muscle. J Food Sci. 2000;65(6):1002–8.

    Article  Google Scholar 

  145. Messens W, Van Camp J, Huyghebaert A. Use of high pressure to modify the functionality of food proteins. Trends Food Sci Technol. 1997;8:107–12.

    Article  CAS  Google Scholar 

  146. Molina E, Papadopoulou A, Ledward DA. Emulsifying properties of high pressure treated soy protein isolate and 7S and 11S globulins. Food Hydrocolloids. 2001;15:263–9.

    Article  CAS  Google Scholar 

  147. Apichartsrangkoon A, Ledward DA, Bell AE, Brennan JG. Physicochemical properties of high pressure treated wheat gluten. Food Chem. 1998;63(2):215–20.

    Article  CAS  Google Scholar 

  148. Fernandez-Martin F. Bird muscles under hydrostatic high-pressure/temperature combinations. J Therm Anal Calorim. 2007;87(1):285–90.

    Article  CAS  Google Scholar 

  149. Macfarlane JJ, Mckenzie IJ, Turner RH. Pressure treatment of meat: effects on thermal transitions and shear values. Meat Sci. 1980;5:307–17.

    Article  Google Scholar 

  150. Fernández-Martín F, Fernández P, Carballo J, Colmenero FJ. Pressure/heat combinations on pork meat batters: protein thermal behavior and product rheological properties. J Agric Food Chem. 1997;45:4440–5.

    Article  Google Scholar 

  151. Fernandez-Martin F, Sanz PD, Otero L. Pressure assisted freezing of pork muscle meat Vs ordinary freezing: protein denaturation. In: Ludwig H, editor. Advances in high-pressure and biotechnology. Berlin: Springer; 1999. p. 468–72.

    Google Scholar 

  152. Fernández-Martín F, Fernández P, Carballo J, Jiménez-Colmenero F. DSC study on the influence of meat source, salt and fat levels, and processing parameters on batters pressurization. Eur Food Res Technol. 2000;211(6):387–92.

    Article  Google Scholar 

  153. Supavititpatana T, Apichartsrangkoon A. Combination effects of ultra-high pressure and temperature on the physical and thermal properties of ostrich meat sausage (yor). Meat Sci. 2007;76(3):555–60.

    Article  Google Scholar 

  154. Parés D, Saguer E, Saurina J, Suñol JJ, Toldrà M, Carretero C. DSC study of the effects of high pressure and spray-drying treatment on porcine plasma. J Therm Anal Calorim. 1998;52(3):837–44.

    Article  Google Scholar 

  155. Hamm R. In: Höyem T, Kvåle O, (eds) (1977) Physical, chemical and biological changes in food caused by thermal processing. Applied Science Publishers: London. pp. 101–134.

  156. Tornberg E. Effects of heat on meat proteins—Implications on structure and quality of meat products. Meat Sci. 2005;70:493–508.

    Article  CAS  Google Scholar 

  157. Offer G. Progress in the biochemistry, physiology and structure of meat. In: Proceedings from the 30th European meeting of meat research workers. Bristol; 1984. pp. 87–93.

  158. Bejerholm C, Aaslyng MD. The influence of cooking technique and core temperature on results of sensory analysis of pork depending on the raw meat quality. Food Qual Prefer. 2003;15:19–30.

    Article  Google Scholar 

  159. Joseph JK, Awosanya B, Adeniran AT, Otagba UM. The effect of end-point internal cooking temperatures on the meat quality attributes if selected Nigerian poultry meats. Food Qual Prefer. 1997;8:57–61.

    Article  Google Scholar 

  160. Aaslyng MD, Bejerholm C, Ertbjerg P, Bertram HC, Andersen HJ. Cooking loss and juiciness of pork in relation to raw meat quality and cooking procedure. Food Qual Prefer. 2003;14:277–88.

    Article  Google Scholar 

  161. Wood JD, Nute GR, Fursey GA, Cuthbertson A. The effect of cooking conditions on the eating quality of pork. Meat Sci. 1995;40:127–35.

    Article  CAS  Google Scholar 

  162. Bertram HC, Wu Z, van den Berg F, Andersen HJ. NMR relaxometry and differential scanning calorimetry during meat cooking. Meat Sci. 2006;74(4):684–9.

    Article  CAS  Google Scholar 

  163. Greaser ML. Postmortem changes in the cytoskeleton proteins in muscle. Proc. XIII Europ. Symposium ‘‘the quality of poultry meat’’. Poznań. 1997; 1: 281–291.

  164. Fritz JD, Dietrich LJ, Greaser ML. Cooking effects on titin in fresh and processed beef products. J Muscle Foods. 1992;3:133–40.

    Article  Google Scholar 

  165. King NL. Breakdown of connectin during cooking of meat. Meat Sci. 1984;11:27–43.

    Article  CAS  Google Scholar 

  166. Pospiech E, Greaser ML, Mikolajczak B, Chiang W, Krzywdzińska M. Thermal properties of titin from porcine and bovine muscles. Meat Sci. 2002;62(2):187–92.

    Article  CAS  Google Scholar 

  167. Oliveira JC, Pereira PM, Frias JM, Cruz IB, MacInnes WM. Application of the concepts of biomaterials science to the quality optimization of frozen foods. In: Oliveira FAR, Oliveira JC, editors. Processing foods quality optimization and process assessment. USA: CRC Press LLC; 1999. p. 107–40.

    Chapter  Google Scholar 

  168. Roos Y. Water activity and glass transition temperature: How do they complement and how do they differ. In: Barbosa-Canovas GV, Welti-Chanes J, editors. Food preservation by moisture control fundamentals and applications. USA: Technomic Publishing; 1995. p. 133–54.

    Google Scholar 

  169. Grunina NA, Belopolskaya TV, Tsereteli TI. The glass transition process in humid biopolymers.DSC study. J Phys: Conf Ser. 2006;40(1):105.

    CAS  Google Scholar 

  170. Goff HD. Measuring and interpreting the glass transition in frozen foods and model systems. Food Res Int. 1994;27:187–9.

    Article  Google Scholar 

  171. Simatos D, Blond G, Perez J. Basic physical aspects of glass transition. In: Barbosa-Canovas GV, Welti-Chanes J, editors. Food preservation by moisture control fundamentals and applications. USA: Technomic Publishing; 1995. p. 3–31.

    Google Scholar 

  172. Delgado AE, Sun DW. Desorption isotherms and glass transition temperature for chicken meat. J Food Eng. 2002;55(1):1–8.

    Article  Google Scholar 

  173. Sablani SS, Kasapis S, Rahman MS. Evaluating water activity and glass transition concepts for food stability. J Food Eng. 2007;72:266–71.

    Article  Google Scholar 

  174. Sablani SS, Rahman MS, Al-Busaidi S, Guizani N, Al-Habsi N, Al-Belushi R, Soussi B. Thermal transition of King fish whole muscle, fat, fat free muscle by differential scanning calorimetry. Thermochim Acta. 2007;462:56–63.

    Article  CAS  Google Scholar 

  175. Sunooj KV, Radhakrishna K, Johnsy George, Bawa AS. Factors influencing the calorimetric determination of glass transition temperature in foods: a case study using chicken and mutton. J Food Eng. 2009;91:347–352.

  176. Kent M, Lees A, Nesvadba P. Detection of irradiated foods by supercooling. Food Sci Technol Today. 1994;8(2):108–9.

    Google Scholar 

  177. Rahman R, Haque AKMM, Sumar S. Physical methods for the identification of irradiated food stuffs. Nutr Food Sci. 1995;2:36–41.

    Article  Google Scholar 

  178. Jayathilakan K, Sultana K, Radhakrishna K, Sharma GK. Effect of irradiation on differential scanning calorimetric profile of fluidized bed dried mutton. Int J Food Prop. 2012;15:202–10.

    Article  CAS  Google Scholar 

  179. Silva VM, Park KJ, Hubinger MD. Glass transition and water sorption of spray dried mussel meat hydrolysate. XVIIth international conference on bioencapsulation, Groningen, Netherlands. 2009; 24–26.

  180. Ohkuma C, Kawai K, Viriyarattanasak C, Mahawanich T, Tantratian S, Takai R, Suzuki T. Glass transition properties of frozen and freeze-dried surimi products: effects of sugar and moisture on the glass transition temperature. Food Hydrocolloids. 2008;22(2):255–62.

    Article  CAS  Google Scholar 

  181. Kurozawa LE, Park KJ, Hubinger MD. Effect of maltodextrin and gum arabic on water sorption and glass transition temperature of spray dried chicken meat hydrolysate protein. J Food Eng. 2009;91(2):287–96.

    Article  CAS  Google Scholar 

  182. Abuladze MK, Sokhadze VM, Namchevadze EN, Kiziria E, Tabatadze LV, Lejava LV, ShGogichaishvili Bakradze NB. Thermal analysis of whole bacterial cells exposed to potassium permanganate using differential scanning calorimetry: a biphasic dose-dependent response to stress. Sci World J. 2009;9:109–17.

    Article  Google Scholar 

  183. Loomis CR, Shipley GG, Small DM. The phase behavior of hydrated cholesterol. J Lipid Res. 1979;20(4):525–35.

    CAS  Google Scholar 

  184. Thiansilakul Y, Benjakul S, Richards MP. Isolation, characterisation and stability of myoglobin from Eastern little tuna (Euthynnus affinis) dark muscle. Food Chem. 2011;124(1):254–61.

    Article  CAS  Google Scholar 

  185. Chen LC, Lin SB, Chen HH. Thermal stability and denaturation rate of myoglobin from various species of fish. Fish Sci. 2004;70(2):293–8.

    Article  CAS  Google Scholar 

  186. Danley RL. New heat flux DSC measurement technique. Thermochim Acta. 2002;395(1):201–8.

    Article  Google Scholar 

  187. Lundgren CJ. High resolution TG of materials. Am Lab. 1992;24(1):49–52.

    CAS  Google Scholar 

  188. Ewing GW. Thermometric methods. In: Instrumental methods of chemical analysis, 3rd ed. Chapter 19. New York: McGraw-Hill; 1969. pp. 420–434.

  189. Judge MD, Aberle ED. Effects of chronological age and postmortem aging on thermal shrinkage temperature of bovine intramuscular collagen. J Anim Sci. 1982;54:68.

    Google Scholar 

  190. Ellekjær MR. Assessment of maximum cooking temperatures of previously heat treated beef. Part 2: differential scanning calorimetry. J Sci Food Agric. 1992;60(2):255–61.

    Article  Google Scholar 

  191. Funami T, Yada H, Nakao Y. Thermal and rheological properties of curdlan gel in minced pork gel. Food Hydrocoll. 1998;12(1):55–64.

    Article  CAS  Google Scholar 

  192. Amako DE, Xiong YL. Effects of carrageenan on thermal stability of proteins from chicken thigh and breast muscles. Food Res Int. 2001;34(2):247–53.

    Article  CAS  Google Scholar 

  193. Fukushima H, Satoh Y, Nakaya M, Ishizaki S, Watabe S. Thermal effects on fast skeletal myosins from Alaska pollock, white croaker, and rabbit in relation to gel formation. J Food Sci. 2003;68(5):1573–7.

    Article  CAS  Google Scholar 

  194. Rasmussen D. A note about “phase diagrams” of frozen tissue. Biodynamica. 1969;10:333–9.

    CAS  Google Scholar 

  195. Simatos D, Faure M, Bonjour E, Couach M. Differential thermal analysis and differential scanning calorimetry in the study of water in foods. In: Duckworth RB, editor. Water relations of foods. London: Academic Press; 1975. p. 193–209.

    Google Scholar 

  196. Levine H, Slade L. Response to the letter by Simatos, Blond, and Le Meste on the relation between glass transition and stability of a frozen product. Cryo- Letters. 1989;10:347–70.

    Google Scholar 

  197. Brake NC, Fennema OR. Glass transition values of muscle tissue. J Food Sci. 1999;64(1):10–5.

    Article  CAS  Google Scholar 

  198. Kurozawa LE, Park KJ, Hubinger MD. Effect of carrier agents on the physicochemical properties of a spray dried chicken meat protein hydrolysate. J Food Eng. 2009;94:326–33.

    Article  CAS  Google Scholar 

  199. Thomas LC. Interpreting unexpected events and transitions in DSC results. https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB0QFjAA&url=http%3A%2F%2Fwww.tainstruments.com%2Flibrary_download.aspx%3Ffile%3DTA039.PDF&ei=b_n3VOi1MJC1uQS6w4DQBQ&usg=AFQjCNE9kY1hCv8bgfIdpfUAFU9D3z1qJw&bvm=bv.87519884,d.c2E. Accessed 16 May 2014.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poonkodi Tamilmani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamilmani, P., Pandey, M.C. Thermal analysis of meat and meat products. J Therm Anal Calorim 123, 1899–1917 (2016). https://doi.org/10.1007/s10973-015-4696-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4696-8

Keywords

Navigation