Journal of Thermal Analysis and Calorimetry

, Volume 121, Issue 1, pp 517–524 | Cite as

A novel approach to polyaluminosialates curing process using electric boosting and temperature profile investigation by DSC

  • Tomáš Kovářík
  • Petr Franče
  • Jaroslav Šesták
  • David Rieger
  • Petr Bělský
  • Jaroslav Kadlec
  • Pavel Roubíček


The curing procedures of polyaluminosialates mixtures at elevated temperature are widely involved in preparation of geopolymer systems. This paper deals with design and characterization of a novel curing process by electric boosting, where electric power, current and voltage were controlled in relation to the curing temperature of geopolymer binder based on concentrated potassium silicate solution. Two types of specimens were prepared, namely beam-shaped specimens with a volume of 96 cm3 to study the flexural strength and apparent porosity development and plates with a volume of 352 cm3 to investigate the changes in electric parameters in relation to the elevated temperature during the curing process in increased volume specimens. The evolution of curing temperature was controlled by manually adjusting the electric power, depending on the specimen type, so as not to exceed 80 °C. An analysis of the curing mechanism is presented for highly filled geopolymer paste with angular particles of ceramic grog. The mechanical tests revealed no differences in flexural strength (>5 MPa) and apparent porosity (~26 %) between electrically and normally cured specimens. The curing regime for experimental mixture was studied systematically by the effects of heat evolution using DSC, indicating acceleration of structural changes in the temperature range 60–80 °C. The results showed that proposed procedure provides a good alternative for traditional curing methods using dry oven facilities.


Geopolymer Curing Electric boosting Flexural strength DSC 



The result was developed within the CENTEM project, Reg. No. CZ.1.05/2.1.00/03.0088, cofunded by the ERDF as part of the Ministry of Education, Youth and Sports OP RDI programme and, in the follow-up sustainability stage, supported through CENTEM PLUS (LO1402) by financial means from the Ministry of Education, Youth and Sports under the National Sustainability Programme I. This action is realized by the project EXLIZ—CZ.1.07/2.3.00/30.0013, which is co-financed by the European Social Fund and the state budget of the Czech Republic. The authors wish to thank DiS. Vladimír Kriška for drawings and design of the moulds.


  1. 1.
    Davidovits J. Geopolymers and geopolymeric materials. J Therm Anal. 1989;35:429–41.CrossRefGoogle Scholar
  2. 2.
    Davidovits J. Geopolymers: inorganic polymeric new materials. J Therm Anal. 1991;37:1633–56.CrossRefGoogle Scholar
  3. 3.
    Kriven WM. Inorganic polysialates or geopolymers. Am Ceram Soc Bull. 2010;89:31–4.Google Scholar
  4. 4.
    Šesták J, Koga N, Šimon P, Foller B, Roubíček P, Wu NLN. Amorphous inorganic polysialates: geopolymeric composites and the bioactivity of hydroxyl groups. In: Šesták J, Šimon P, editors. Chapter 21, Thermal analysis of micro-, nano- and non-crystalline materials. Berlin: Springer; 2013. pp. 441–460.Google Scholar
  5. 5.
    Šoukal F, Opravil T, Ptáček P, Foller B, Brandštetr J, Roubíček P. Geopolymers—amorphous ceramics via solution. In: Šesták J, Holeček M, Málek J, editors. Chapter 26, Some thermodynamic, structural and behavioral properties of materials accentuating noncrystalline states. Pilsen: OPS-ZČU Plzeň; 2009. pp. 556–584 (available on request at Scholar
  6. 6.
    Šesták J, Foller B. Some aspects of composite inorganic polysialates. J Therm Anal Calorim. 2012;109:1–5.CrossRefGoogle Scholar
  7. 7.
    Shi C, Feznández-Jiménez A, Palomo A. New cements for the 21st century: the pursuit of an alternative to Portland cement. Cem Concr Res. 2011;41:750–63.CrossRefGoogle Scholar
  8. 8.
    Khale D, Chaudhary R. Mechanism of geopolymerization and factors influencing its development: a review. J Mater Sci. 2007;42:729–46.CrossRefGoogle Scholar
  9. 9.
    Duxson P, Mallicoat SW, Lukey GC, Kriven WM, Van Deventer JSJ. The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. Colloid Surf A Physiochem Eng Asp. 2007;292:8–20.CrossRefGoogle Scholar
  10. 10.
    Duxson P, Provis JL, Lukey GC, Mallicoat SW, Kriven WM, Van Deventer JSJ. Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloid Surf A Physicochem Eng Asp. 2005;269:47–58.CrossRefGoogle Scholar
  11. 11.
    Palomo A, Blanco-Varela MT, Granizo ML, Puertas F, Vazquez T, Grutzeck MW. Chemical stability of cementitious materials based on metakaolin. Cem Concr Res. 1999;29:997–1004.CrossRefGoogle Scholar
  12. 12.
    Granizo N, Palomo A, Fernandez-Jiménez A. Effect of temperature and alkaline concentration on metakaolin leaching kinetics. Ceram Int. 2014;40:8975–85.CrossRefGoogle Scholar
  13. 13.
    Rovnaník P. Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Constr Build Mater. 2010;24:1176–83.CrossRefGoogle Scholar
  14. 14.
    Burciaga-Diaz O, Escalante-Garcia JI, Gorokhovsky A. Geopolymers based on a coarse low-purity kaolin mineral: mechanical strength as a function of the chemical composition and temperature. Cem Concr Compos. 2012;34:18–24.CrossRefGoogle Scholar
  15. 15.
    Granizo ML, Blanco-Varela MT, Martínez-Ramírez S. Alkali activation of metakaolins: parameters affecting mechanical, structural and microstructural properties. J Mater Sci. 2007;42:2934–43.CrossRefGoogle Scholar
  16. 16.
    Heah CY, Kamarudin H, Al Bakri AMM, Binhussain M, Luqman M, Nizar IK, Ruzaidi CM, Liew YM. Effect of curing profile on kaolin-based geopolymers. Phys Proc. 2011;22:305–11.CrossRefGoogle Scholar
  17. 17.
    Chen Ch, Gong W, Lutze W, Pegg IL. Kinetics of fly ash geopolymerization. J Mater Sci. 2011;46:3073–83.CrossRefGoogle Scholar
  18. 18.
    Kovalchuk G, Fernández-Jiménez A, Palomo A. Alkali-activated fly ash: effect of thermal curing conditions on mechanical and microstructural development—Part II. Fuel. 2007;86:315–22.CrossRefGoogle Scholar
  19. 19.
    Lancellotti I, Catauro M, Ponzoni Ch, Bollino F, Leonelli C. Inorganic polymers from alkali activation of metakaolin: effect of setting and curing on structure. J Solid State Chem. 2013;200:341–8.CrossRefGoogle Scholar
  20. 20.
    Palomo A, Grutzeck MW, Blanco MT. Alkali-activated fly ashes: a cement for the future. Cem Concr Res. 1999;29:1323–9.CrossRefGoogle Scholar
  21. 21.
    Ferone C, Colangelo F, Cioffi R, Montagnaro F, Santoro L. Mechanical performances of weathered coal fly ash based geopolymer bricks. Procedia Eng. 2011;21:745–52.CrossRefGoogle Scholar
  22. 22.
    Kirschner A, Harmuth H. Investigation of geopolymer binders with respect to their application for building materials. Ceram-Silik. 2004;48–3:117–20.Google Scholar
  23. 23.
    Fernández-Jiménez A, Monzó M, Vicent M, Barba A, Palomo A. Alkaline activation of metakaolin–fly ash mixtures: obtain of Zeoceramics and Zeocements. Microporous Mesoporous Mater. 2008;108:41–9.CrossRefGoogle Scholar
  24. 24.
    Silva PD, Sagoe-Crenstil K. Medium-term phase stability of Na2O–Al2O3–SiO2–H2O geopolymer systems. Cem Concr Res. 2008;38:870–6.CrossRefGoogle Scholar
  25. 25.
    Chindaprasirt P, Rattanasak U, Taebuanhuad S. Role of microwave radiation in curing the fly ash geopolymer. Adv Powder Technol. 2013;24:703–7.CrossRefGoogle Scholar
  26. 26.
    Van Deventer JSJ, Provis JL, Duxson P. Technical and commercial progress in the adoption of geopolymer cement. Miner Eng. 2012;29:89–104.Google Scholar
  27. 27. Accessed 1 Sept 2014.
  28. 28.
    Eckschlager K, Horsák I, Kodejš Z. Evaluation of analytical results and methods. Vyhodnocení analytických výsledků a metod. Praha: SNTL/ALFA; 1980.Google Scholar
  29. 29.
    Gaboriaud F, Nonat A, Chaumont D, Craievich A, Hanquet B. Si-29 NMR and small-angle X-ray scattering studies of the effect of alkaline ions (Li+, Na+, and K+) in silico-alkaline sols. J Phys Chem B. 1999;103–12:2091–9.CrossRefGoogle Scholar
  30. 30.
    Qi QW, Klauber C, Warren LJ. Mechanism of action of sodium silicate in the flotation of apatite from hematite. Int J Miner Process. 1993;39:251–73.CrossRefGoogle Scholar
  31. 31.
    Tognonvi MT, Massiot D, Lecomte A, Rossignol A, Bonnet JP. Identification of solvated species present in concentrated and dilute sodium silicate solutions by combined 29Si NMR and SAXS studies. Colloid Interface Sci. 2010;352:309–15.CrossRefGoogle Scholar
  32. 32.
    Weng L, Sagoe-Crentsil K, Brown T, Song S. Effects of aluminates on the formation of geopolymers. Mater Sci Eng B. 2005;117:163–8.CrossRefGoogle Scholar
  33. 33.
    Van Jaarsveld JGS, Van Deventer JSJ, Lukey GC. The effect of composition and temperature on the properties of fly ash- and kaolinite-based geopolymers. J Chem Eng. 2002;89:63–73.CrossRefGoogle Scholar
  34. 34.
    ASTM C20-00 (2010). Standard test methods for apparent porosity, water absorption, apparent specific gravity, and bulk density of burned refractory brick and shapes by boiling water. West Conshohocken, PA, US: ASTM International. 2010.Google Scholar
  35. 35.
    Alonso S, Palomo A. Alkaline activation of metakaolin and calcium hydroxide mixtures: influence of temperature, activator concentration and solids ratio. Mater Lett. 2001;47:55–62.CrossRefGoogle Scholar
  36. 36.
    Muniz-Villarreal MS, Manzano-Ramírez A, Sampieri-Bulbarela S, Gasca-Tirado JR, Reyes-Araiza JL, Rubio-Ávalos JC, Pérez-Bueno JJ, Apatiga LM, Zaldivar-Cadena A, Amigó-Borrás V. The effect of temperature on the geopolymerization process of a metakaolin-based geopolymer. Mater Lett. 2011;65:995–8.CrossRefGoogle Scholar
  37. 37.
    Zhang Z, Wang H, Provis JL, Bullen F, Reid A, Zhu Y. Quantitative kinetic and structural analysis of geopolymers. Part 1. The activation of metakaolin with sodium hydroxide. Thermochim Acta. 2012;539:23–33.CrossRefGoogle Scholar
  38. 38.
    De Silva P, Sagoe-Crenstil K, Sirivivatnanon V. Kinetics of geopolymerization: role of Al2O3 and SiO2. Cem Concr Res. 2007;37:512–8.CrossRefGoogle Scholar
  39. 39.
    Duxson P, Fernandez-Jimenez A, Provis JL, Lukey GC, Palomo A, Van Deventer JSJ. Geopolymer technology: the current state of the art. J Mater Sci. 2007;42:2917–33.CrossRefGoogle Scholar
  40. 40.
    Zhang Z, Provis JL, Wang H, Bullen F, Reid A. Quantitative kinetic and structural analysis of geopolymers. Part 2. Thermodynamics of sodium silicate activation of metakaolin. Thermochim Acta. 2013;565:163–71.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Tomáš Kovářík
    • 1
  • Petr Franče
    • 1
  • Jaroslav Šesták
    • 1
  • David Rieger
    • 1
  • Petr Bělský
    • 1
  • Jaroslav Kadlec
    • 1
  • Pavel Roubíček
    • 2
  1. 1.New Technologies - Research CentreUniversity of West BohemiaPilsenCzech Republic
  2. 2.České lupkové závodyNové StrašecíCzech Republic

Personalised recommendations