Journal of Thermal Analysis and Calorimetry

, Volume 121, Issue 2, pp 691–695 | Cite as

Study of thermal decomposition of a zinc(II) monomethyl terephthalate complex, [Zn(CH3O–CO–C6H4COO)2(OH2)3]·2H2O

  • Mihaela-Diana Şerb
  • Paul Müller
  • Roxana Truşcă
  • Ovidiu Oprea
  • Florina Dumitru


In this contribution, we report the thermal decomposition and thermo-X-ray diffraction analyses of a ZnII monomethyl terephthalate complex, [Zn(CH3O–CO–C6H4COO)2(OH2)3]·2H2O. Both XRD and temperature-dependent T-XRD patterns for the title compound in the thermal decomposition process (temperature range 30–300 °C) present diffraction peaks reminiscent of ordered, crystalline structure of the starting complex [Zn(CH3O–CO–C6H4COO)2(OH2)3]·2H2O. Crystallization and coordination water molecules of the title complex are eliminated in successive steps, and then the anhydrous complex decomposes to ZnO (the total experimental mass loss of 84.80 % versus the theoretical mass loss, 84.23 %). The formation of ZnO of wurtzite structure (hexagonal phase, space group P63 mc) as spherical nanoparticles with average size of 58 nm has been confirmed by XRD, SEM and EDX analyses performed on the final product.


Zinc complex Monomethyl terephthalate Thermal study T-XRD 



Authors recognize financial support from the European Social Fund through POSDRU/89/1.5/S/54785 project: Postdoctoral Program for Advanced Research in the field of nanomaterials.

Supplementary material

10973_2015_4629_MOESM1_ESM.doc (146 kb)
Supplementary material 1 (DOC 146 kb)


  1. 1.
    Rao CNR, Natarajan S, Vaidhyanathan R. Angew Chem Int Ed. 2004;43:1466–96.CrossRefGoogle Scholar
  2. 2.
    Cui Y, Evans OR, Ngo HL, White PS, Lin W. Angew Chem Int Ed. 2002;41:1159–62.CrossRefGoogle Scholar
  3. 3.
    Baca SG. IJPAC-Int Res J Pure Appl Chem. 2012;2(1):1–24.CrossRefGoogle Scholar
  4. 4.
    Kitagawa S, Kitaura R, Noro S-i. Angew Chem Int Ed. 2004;43:2334–75.CrossRefGoogle Scholar
  5. 5.
    Mori W, Sato T, Ohmura T, Kato CN, Takei TJ. Solid State Chem. 2005;178:2555–73.CrossRefGoogle Scholar
  6. 6.
    Mori W, Takamizawa S. J. Solid State Chem. 2000;152(10):120–9.CrossRefGoogle Scholar
  7. 7.
    Li H, Eddaoudi M, O’Keeffe M, Yaghi OM. Nature. 1999;402:276–9.CrossRefGoogle Scholar
  8. 8.
    Hawxwell SM, Adams H, Brammer L. Acta Cryst. 2006;B62:808–14.CrossRefGoogle Scholar
  9. 9.
    Acheson RJ, Galwey AK. J. Chem. Soc. A 1967;1174–1178.Google Scholar
  10. 10.
    Şerb M-D, Wang Y, Dumitru F, Englert U. Acta Cryst. 2011;E67:m475–6.Google Scholar
  11. 11.
    Li H, Eddaoudi M, Groy TL, Yaghi OM. J Am Chem Soc. 1998;120:8571–2.CrossRefGoogle Scholar
  12. 12.
    Clausen HF, Poulsen RD, Bond AD, Chevallier M-AS, Iversen BB. J Solid State Chem. 2005;178:3342–51.CrossRefGoogle Scholar
  13. 13.
    Sun J, Zhou Y, Fang Q, Chen Z, Weng L, Zhu G, Qiu S, Zhao D. Inorg Chem. 2006;45:8677–84.CrossRefGoogle Scholar
  14. 14.
    Yin P-X, Zhang J, Li Z-J, Qin Y-Y, Cheng J-K, Yao Y-G. Inorg Chem Commun. 2008;11:134–7.CrossRefGoogle Scholar
  15. 15.
    Carton A, Mesbah A, Aranda L, Rabu P, Francois M. Solid State Sci. 2009;11:818–23.CrossRefGoogle Scholar
  16. 16.
    Roy S, Sarkar BN, Bhar K, Satapathi S, Mitra P, Ghosh BK. J Mol Str. 2013;1037:160–9.CrossRefGoogle Scholar
  17. 17.
    Donald Kirkbright Black, US Patent 4058663, 1977.Google Scholar
  18. 18.
    Tranchemontagne DJ, Mendoza-Cortés JL, O’Keeffe M, Yaghi OM. Chem Soc Rev. 2009;38:1257–83.CrossRefGoogle Scholar
  19. 19.
    Spek AL. Acta Cryst. 2009;D65:148–55.Google Scholar
  20. 20.
    Brzyska W, Wańczowska-Fonfara D. J Therm Anal Calorim. 1989;35(3):727–33.CrossRefGoogle Scholar
  21. 21.
    Carp O, Patron L, Segal E. Rev Roum Chim. 2006;51(1):5–12.Google Scholar
  22. 22.
    Findoráková L, Györyová K, Hudecová D, Mudroñová D, Kovářová J, Homzová K, Nour El-Dien FA. J Therm Anal Calorim. 2013;111:1771–81.CrossRefGoogle Scholar
  23. 23.
    Bujdošová Z, Györyová K, Kovářová J, Hudecová D, Halás L. J Therm Anal Calorim. 2009;98:151–9.CrossRefGoogle Scholar
  24. 24.
    Brzyska W, Ozga W. J Therm Anal Calorim. 2002;67:623–9.CrossRefGoogle Scholar
  25. 25.
    Skoršepa J, Godočíková E, Černák J. J Therm Anal Calorim. 2004;75:773–80.CrossRefGoogle Scholar
  26. 26.
    Kurpiel-Gorgol R, Brzyska W. J Therm Anal Calorim. 2003;71:539–48.CrossRefGoogle Scholar
  27. 27.
    Krajníková A, Györyová K, Kovářová J, Hudecová D, Hubáčková J, Nour El-Dien F, Koman M. J Therm Anal Calorim. 2012;110(1):177–85.CrossRefGoogle Scholar
  28. 28.
    Morkoç H, Özgur Ü, Zinc oxide: fundamentals, materials and device technology. Wiley. KGaA, Weinheim: GmbH & Co; 2009. ISBN 978-3-527-40813-9.CrossRefGoogle Scholar
  29. 29.
    Wang ZL. J Phys Condens Matter. 2004;16:R829.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Mihaela-Diana Şerb
    • 1
  • Paul Müller
    • 2
  • Roxana Truşcă
    • 3
  • Ovidiu Oprea
    • 1
  • Florina Dumitru
    • 1
  1. 1.Faculty of Applied Chemistry and Materials SciencePolitehnica University of BucharestBucharestRomania
  2. 2.Institute of Inorganic ChemistryRWTH Aachen UniversityAachenGermany
  3. 3.METAV Research and DevelopmentBucharestRomania

Personalised recommendations