Skip to main content
Log in

Study of thermal decomposition of a zinc(II) monomethyl terephthalate complex, [Zn(CH3O–CO–C6H4COO)2(OH2)3]·2H2O

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this contribution, we report the thermal decomposition and thermo-X-ray diffraction analyses of a ZnII monomethyl terephthalate complex, [Zn(CH3O–CO–C6H4COO)2(OH2)3]·2H2O. Both XRD and temperature-dependent T-XRD patterns for the title compound in the thermal decomposition process (temperature range 30–300 °C) present diffraction peaks reminiscent of ordered, crystalline structure of the starting complex [Zn(CH3O–CO–C6H4COO)2(OH2)3]·2H2O. Crystallization and coordination water molecules of the title complex are eliminated in successive steps, and then the anhydrous complex decomposes to ZnO (the total experimental mass loss of 84.80 % versus the theoretical mass loss, 84.23 %). The formation of ZnO of wurtzite structure (hexagonal phase, space group P63 mc) as spherical nanoparticles with average size of 58 nm has been confirmed by XRD, SEM and EDX analyses performed on the final product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rao CNR, Natarajan S, Vaidhyanathan R. Angew Chem Int Ed. 2004;43:1466–96.

    Article  CAS  Google Scholar 

  2. Cui Y, Evans OR, Ngo HL, White PS, Lin W. Angew Chem Int Ed. 2002;41:1159–62.

    Article  CAS  Google Scholar 

  3. Baca SG. IJPAC-Int Res J Pure Appl Chem. 2012;2(1):1–24.

    Article  CAS  Google Scholar 

  4. Kitagawa S, Kitaura R, Noro S-i. Angew Chem Int Ed. 2004;43:2334–75.

    Article  CAS  Google Scholar 

  5. Mori W, Sato T, Ohmura T, Kato CN, Takei TJ. Solid State Chem. 2005;178:2555–73.

    Article  CAS  Google Scholar 

  6. Mori W, Takamizawa S. J. Solid State Chem. 2000;152(10):120–9.

    Article  CAS  Google Scholar 

  7. Li H, Eddaoudi M, O’Keeffe M, Yaghi OM. Nature. 1999;402:276–9.

    Article  CAS  Google Scholar 

  8. Hawxwell SM, Adams H, Brammer L. Acta Cryst. 2006;B62:808–14.

    Article  CAS  Google Scholar 

  9. Acheson RJ, Galwey AK. J. Chem. Soc. A 1967;1174–1178.

  10. Şerb M-D, Wang Y, Dumitru F, Englert U. Acta Cryst. 2011;E67:m475–6.

    Google Scholar 

  11. Li H, Eddaoudi M, Groy TL, Yaghi OM. J Am Chem Soc. 1998;120:8571–2.

    Article  CAS  Google Scholar 

  12. Clausen HF, Poulsen RD, Bond AD, Chevallier M-AS, Iversen BB. J Solid State Chem. 2005;178:3342–51.

    Article  CAS  Google Scholar 

  13. Sun J, Zhou Y, Fang Q, Chen Z, Weng L, Zhu G, Qiu S, Zhao D. Inorg Chem. 2006;45:8677–84.

    Article  CAS  Google Scholar 

  14. Yin P-X, Zhang J, Li Z-J, Qin Y-Y, Cheng J-K, Yao Y-G. Inorg Chem Commun. 2008;11:134–7.

    Article  CAS  Google Scholar 

  15. Carton A, Mesbah A, Aranda L, Rabu P, Francois M. Solid State Sci. 2009;11:818–23.

    Article  CAS  Google Scholar 

  16. Roy S, Sarkar BN, Bhar K, Satapathi S, Mitra P, Ghosh BK. J Mol Str. 2013;1037:160–9.

    Article  CAS  Google Scholar 

  17. Donald Kirkbright Black, US Patent 4058663, 1977.

  18. Tranchemontagne DJ, Mendoza-Cortés JL, O’Keeffe M, Yaghi OM. Chem Soc Rev. 2009;38:1257–83.

    Article  CAS  Google Scholar 

  19. Spek AL. Acta Cryst. 2009;D65:148–55.

    Google Scholar 

  20. Brzyska W, Wańczowska-Fonfara D. J Therm Anal Calorim. 1989;35(3):727–33.

    Article  CAS  Google Scholar 

  21. Carp O, Patron L, Segal E. Rev Roum Chim. 2006;51(1):5–12.

    CAS  Google Scholar 

  22. Findoráková L, Györyová K, Hudecová D, Mudroñová D, Kovářová J, Homzová K, Nour El-Dien FA. J Therm Anal Calorim. 2013;111:1771–81.

    Article  Google Scholar 

  23. Bujdošová Z, Györyová K, Kovářová J, Hudecová D, Halás L. J Therm Anal Calorim. 2009;98:151–9.

    Article  Google Scholar 

  24. Brzyska W, Ozga W. J Therm Anal Calorim. 2002;67:623–9.

    Article  CAS  Google Scholar 

  25. Skoršepa J, Godočíková E, Černák J. J Therm Anal Calorim. 2004;75:773–80.

    Article  Google Scholar 

  26. Kurpiel-Gorgol R, Brzyska W. J Therm Anal Calorim. 2003;71:539–48.

    Article  CAS  Google Scholar 

  27. Krajníková A, Györyová K, Kovářová J, Hudecová D, Hubáčková J, Nour El-Dien F, Koman M. J Therm Anal Calorim. 2012;110(1):177–85.

    Article  Google Scholar 

  28. Morkoç H, Özgur Ü, Zinc oxide: fundamentals, materials and device technology. Wiley. KGaA, Weinheim: GmbH & Co; 2009. ISBN 978-3-527-40813-9.

    Book  Google Scholar 

  29. Wang ZL. J Phys Condens Matter. 2004;16:R829.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors recognize financial support from the European Social Fund through POSDRU/89/1.5/S/54785 project: Postdoctoral Program for Advanced Research in the field of nanomaterials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florina Dumitru.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 146 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şerb, MD., Müller, P., Truşcă, R. et al. Study of thermal decomposition of a zinc(II) monomethyl terephthalate complex, [Zn(CH3O–CO–C6H4COO)2(OH2)3]·2H2O. J Therm Anal Calorim 121, 691–695 (2015). https://doi.org/10.1007/s10973-015-4629-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4629-6

Keywords

Navigation