Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 121, Issue 2, pp 641–650 | Cite as

Effects of altitude and sample orientation on heat transfer for flame spread over polystyrene foams

  • Xinjie Huang
  • Jie Zhao
  • Ying Zhang
  • Yang Zhou
  • Qingsong Wang
  • Jinhua Sun
Article

Abstract

Experiments were carried out on insulation foams of EPS and XPS in a small-scale flame spread experimental bench in the Tibetan plateau area of Lhasa and the plain area of Hefei both in China, respectively. The effects of altitude and sample orientation on flame spread behavior were quantitatively analyzed. The results show that extinction and secondary ignition occur for XPS on plateau, as the oxygen concentration in air entrainment is influenced by the generated smoke in the pool fire zone. The flame spread speed of EPS increases with the incline angle both in Lhasa and in Hefei, but for XPS (downward flame spread), the flame spread speed increases with the decrease in incline angle, especially in Lhasa. It is found that the heat transfer process is different for EPS and XPS. The transition fire zone plays an important role in heat transfer over XPS for downward flame spread resulting in total heat transfer including the flame convective and radiative heat \( q_{\text{f}}^{\prime \prime } \delta_{\text{f}} \) and the conductive heat \( q_{\text{c}}^{\prime \prime } L \) increase with the decrease in incline angle, while for EPS, the surface flame zone dominates the heat transfer in two places.

Keywords

Incline angle EPS XPS Heat transfer Flame spread Extinction 

Notes

Acknowledgements

This study has been funded by the National Basic Research Program of China (973 Program, Grant. No. 2012CB719702), the National Natural Science Foundation of China (No. 51206002), and the open fund of State Key Laboratory of Fire Science (No. HZ2012-KF04). The authors gratefully acknowledge these supports.

References

  1. 1.
    An W, Jiang L, Sun J, Liew KM. Correlation analysis of sample thickness, heat flux, and cone calorimetry test data of polystyrene foam. J Therm Anal Calorim. 2015;119:229–38.CrossRefGoogle Scholar
  2. 2.
    Xu Q, Majlingova A, Zachar M, Jin C, Jiang Y. Correlation analysis of cone calorimetry test data assessment of the procedure with tests of different polymers. J Therm Anal Calorim. 2012;110:65–70.CrossRefGoogle Scholar
  3. 3.
    Luo F, Wu K, Lu M, Nie S, Li X, Guan X. Thermal degradation and flame retardancy of microencapsulated ammonium polyphosphate in rigid polyurethane foam. J Therm Anal Calorim. 2015;. doi: 10.1007/s10973-015-4425-3.Google Scholar
  4. 4.
    Morgan A, Chu L, Harris J. A flammability performance comparison between synthetic and natural clays in polystyrene nanocomposites. Fire Mater. 2005;29:213–29.CrossRefGoogle Scholar
  5. 5.
    Doroudiani S, Omidian H. Environmental, health and safety concerns of decorative mouldings made of expanded polystyrene in buildings. Build Environ. 2010;45:647–54.CrossRefGoogle Scholar
  6. 6.
    An W, Xiao H, Liew KM, Jiang L, Yan W, Zhou Y, Huang X, Sun J, Gao L. Downward flame spread over extruded polystyrene: effects of sample thickness, pressure, and sidewalls. J Therm Anal Calorim. 2015;119:1091–103.CrossRefGoogle Scholar
  7. 7.
    Zhou Y, Xiao H, Yan W, An W, Jiang L, Sun J. Horizontal flame spread characteristics of rigid polyurethane and molded polystyrene foams under externally applied radiation at two different altitudes. Fire Technol. 2014;. doi: 10.1007/s10694-014-0443-0.Google Scholar
  8. 8.
    Zhang Y, Huang X, Wang Q, Ji J, Sun J, Yin Y. Experimental study on the characteristics of horizontal flame spread over XPS surface on plateau. J Hazard Mater. 2011;189:34–9.CrossRefGoogle Scholar
  9. 9.
    Huang X, Sun J, Ji J, Zhang Y, Wang Q, Zhang Y. Flame spread over the surface of thermal insulation materials in different environments. Chin Sci Bull. 2011;56(15):1617–22.CrossRefGoogle Scholar
  10. 10.
    Griffin GJ, Bicknell AD, Bradbury GP, White N. Effect of construction method on the fire behavior of sandwich panels with expanded polystyrene cores in room fire tests. J Fire Sci. 2006;24:275–94.CrossRefGoogle Scholar
  11. 11.
    Tsai KC. Orientation effect on cone calorimeter test results to assess fire hazard of materials. J Hazard Mater. 2009;172:763–72.CrossRefGoogle Scholar
  12. 12.
    Drysdale DD, Macmillan AJR. Flame spread on inclined surfaces. Fire Saf J. 1992;18:245–54.CrossRefGoogle Scholar
  13. 13.
    Li J, Ji J, Zhang Y, Sun J. Characteristics of flame spread over the surface of charring solid combustibles at high altitude. Chin Sci Bull. 2009;54(8):1127–32.Google Scholar
  14. 14.
    Zhang Y, Ji J, Wang QS, Huang XJ, Wang QH, Sun JH. Prediction of the critical condition for flame acceleration over wood surface with different sample orientations. Combust Flame. 2012;159(9):2999–3002.CrossRefGoogle Scholar
  15. 15.
    Quintiere JG. Fundamentals of fire phenomena. London: Wiley; 2006. p. 195–231.CrossRefGoogle Scholar
  16. 16.
    Murrell J. Multi-layer paint surfaces-a hidden fire hazard. Fire. 1998; 19–20.Google Scholar
  17. 17.
    Wu Y, Xing HJ, Atkinson G. Interaction of fire plume with inclined surface. Fire Saf J. 2000;35(4):391–403.CrossRefGoogle Scholar
  18. 18.
    Jeff W, Matt K, Subrata BI, Altenkirch RA. Heat transfer pathways in flame spreading over thick fuels as a function of the flame spread regime: microgravity, thermal, and kinetic. Combust Sci Technol. 1997;127(1):119–40.Google Scholar
  19. 19.
    Thomas PH. Rates of spread of some wind driven fires. J Forest. 1971;44(2):155–7.CrossRefGoogle Scholar
  20. 20.
    Hirano T, Noreikis SE, Waterman TE. Postulations of flame spread mechanisms. Combust Flame. 1974;22(3):353–63.CrossRefGoogle Scholar
  21. 21.
    Ohlemiller TJ, Shields JR. Aspects of the fire behavior of thermoplastic materials, National Institute of Standards and Technology. 2007. p.1–30.Google Scholar
  22. 22.
    Chow WK, Leung CW. Necessity of testing fire behaviour of plastic materials under flashover. Polym Test. 2006;25:853–8.CrossRefGoogle Scholar
  23. 23.
    Xie QY, Zhang HP, Ye RB. Experimental study on melting and flowing behavior of thermoplastics combustion based on a new setup with a T-shape trough. J Hazard Mater. 2009;166:1321–5.CrossRefGoogle Scholar
  24. 24.
    Wang Y, Zhang F, Chen XL, Jin Y, Zhang J. Burning and dripping behaviors of polymers under the UL94 vertical burning test conditions. Fire Mater. 2010;34:203–15.CrossRefGoogle Scholar
  25. 25.
    Wang XG, Cheng XD, Li LM, Lo S, Zhang HP. Effect of ignition condition on typical polymer’s melt flow flammability. J Hazard Mater. 2011;190(1–3):766–71.CrossRefGoogle Scholar
  26. 26.
    Ansari M, Hatzikiriakos SG, Mitsoulis E. Slip effects in HDPE flows. J Non-Newton Fluid. 2012;167–168:18–29.Google Scholar
  27. 27.
    Gollner MJ, Overholt K, Williams FA, Rangwala AS, Perricone J. Warehouse commodity classification from fundamental principles. Part I: commodity and burning rates. Fire Saf J. 2011;46:305–16.CrossRefGoogle Scholar
  28. 28.
    Overholt KJ, Gollner MJ, Perricone J, Rangwala AS, Williams FA. Warehouse commodity classification from fundamental principles. Part II: flame heights and flame spread. Fire Saf J. 2011;46:317–29.CrossRefGoogle Scholar
  29. 29.
    Zhang Y, Sun JH, Huang XJ, Chen XF. Heat transfer mechanisms in horizontal flame spread over wood and extruded polystyrene surfaces. Int J Heat Mass Transf. 2013;61:28–34.CrossRefGoogle Scholar
  30. 30.
    Jiang L, Xiao H, Zhou Y, An W, Yan W, He J, Sun J. Theoretical and experimental study of width effects on horizontal flame spread over extruded and expanded polystyrene foam surfaces. J Fire Sci. 2014;32(3):193–209.CrossRefGoogle Scholar
  31. 31.
    Quintiere JG, Rangwala AS. A theory for flame extinction based on flame temperature. Fire Mater. 2004;28:387–402.CrossRefGoogle Scholar
  32. 32.
    Huang XJ, Wang QS, Zhang Y, Yin Y, Sun JH. Thickness effect on flame spread characteristics of expanded polystyrene in different environments. J Thermoplast Compos Mater. 2011;25:427–38.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Xinjie Huang
    • 1
  • Jie Zhao
    • 1
  • Ying Zhang
    • 2
  • Yang Zhou
    • 3
  • Qingsong Wang
    • 3
  • Jinhua Sun
    • 3
  1. 1.School of Civil Engineering and ArchitectureAnhui University of TechnologyMa’anshanPeople’s Republic of China
  2. 2.School of Resources and Environmental EngineeringWuhan University of TechnologyWuhanPeople’s Republic of China
  3. 3.State Key Laboratory of Fire ScienceUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China

Personalised recommendations