Skip to main content
Log in

Comparison of heat capacity of solid explosives by DSC and group contribution methods

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The isobaric heat capacities of solid explosive materials were measured using differential scanning calorimeter. The values of C p were determined at temperature 298.15 K and compared to theoretical data calculated using the group additivity approach. Several group contribution methods were tested, showing that certain method for some explosives provides estimation of C p with error only 1 %. Generally, the average error limit for calculated C p was about 11 %, which is insufficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Boileau J, Fauquignon C, Hueber B, Meyer HH. Explosives. In: Ullmann´s, editor. Encyclopedia of industrial chemistry. England: John Wiley and Sons; 2009.

  2. Dobratz BM. LLNL explosives handbook. UCRL Report 52 997. Change 2. Livermore: ISEE EXPLOSIVES ENGINEERS; 1985.

  3. Bohn MA, Volk F. Adiabatische Selbstaufheizung bei Treib-und Explosivstoffen. 24th Annual Conference of ICT, Karlsruhe; Jun 1993.

  4. Accelerating rate calorimeter—ARC technical information note 005, temperature of no return: Application of ARC data maximum safe temperatures and pack sizes. Technical manual, THT.

  5. Fischer HG, Goezt DD. Determination of self-accelerating decomposition temperatures using the Accelerating Rate Calorimeter. J Loss Prev Process Ind. 1991;4:95–9.

    Google Scholar 

  6. Pilař R, Honcová P, Koštál P, Sádovská G, Svoboda L. Modified stepwise method for determining heat capacity by DSC. J Therm Anal Calorim. 2014;118:485–91.

    Article  Google Scholar 

  7. Mraw SC, Naas DF. Measurement of accurate heat-capacities by differential scanning calorimetry. Comparison of d.s.c. results on pyrite (100 to 800 K) with literature values from precision adiabatic calorimetry. J Chem Termodyn. 1979;11:567–84.

    Article  CAS  Google Scholar 

  8. Application note M149-v1, Setaram.

  9. Meyer R, Kohler J, Homburg A. Explosive. 5th ed. Wiley: Weinheim; 2002.

    Book  Google Scholar 

  10. Baytos JF. Informal report LA-8034-MS, UC-45. Los Alamos Scientific Laboratory: University of California; 1979.

    Google Scholar 

  11. Haishan D, Fenfen Z. Performance of high explosives and their related materials. Beijing: Science Press; 1989.

    Google Scholar 

  12. Tran TD, Simpson RL, Maienschein J, Tarver C. U.S. Department of Energy. Karlsruhe, Germany; 3–6 Jul 2001.

  13. Rylance J, Stubley D. Heat capacities and phase transitions of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). Thermochim Acta. 1975;13:253–9.

    Article  CAS  Google Scholar 

  14. Licht HH, Hansson J. HMX (octogen) and its polymorphic forms. In: Symposium on chemistry problems with the stability of explosives. 1971. 3. p. 168–79.

  15. Lyman JL, Liau YC, Brand HV. Thermochemical functions for gas-phase, 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX), its condensed phases, and its larger reaction products. Combust Flame. 2002;130:185–203.

    Article  CAS  Google Scholar 

  16. Xu K, Song J, Zhao F, Ma H, Gao H, Chang C, Ren Y, Hu R. Thermal behaviour, specific heat capacity and adiabatic time-to-explosion of G(FOX-7). J Hazard Mater. 2008;158:333–9.

    Article  CAS  Google Scholar 

  17. Zhaona L, Haixia M, Jirong S, Fengqi Z, Kangzhen X, Rongzu H. Specific heat capacity, thermodynamic properties and adiabatic time-to- explosion of 3-nitro-1,2,4-triazol-5-one (NTO). Huozhayao Xuebao. 2008;31:25–8.

    Google Scholar 

  18. Dorofeeva OV, Tolmach PI. Estimation of the thermodynamic properties of nitroguanidine, hexahydro-1,3,5-trinitro-1,3,5-triazine and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in the gas phase. Termochim Acta. 1994;240:47–66.

    Article  CAS  Google Scholar 

  19. Fulem M, Laštovka V, Straka M, Růžička K, Shaw JM. Heat capacities of tetracene and pentacene. J Chem Eng Data. 2008;53:2175–81.

    Article  CAS  Google Scholar 

  20. Sallamie N, Shaw JM. Heat capacity prediction for polynuclear aromatic solids using vibration spectra. Fluid Ph Equilib. 2005;237:100–10.

    Article  CAS  Google Scholar 

  21. Wunderlich B. Thermal analysis of polymeric materials. Heidelberg: Springer; 2005. p. 101–44.

    Google Scholar 

  22. Domalski ES, Hearing ED. Estimation of the thermodynamic properties of hydrocarbons at 298.15 K. J Phys Chem Ref Data. 1988;17:1637–78.

    Article  CAS  Google Scholar 

  23. Hurst JE, Harrison BK. Estimation of liquid and solid heat capacities using a modified Kopp’s rule. Chem Eng Commun. 1992;112:21–30.

    Article  CAS  Google Scholar 

  24. Rihani DN, Doraiswamy LK. Estimation of heat capacity of organic compounds from group contributions. Ind Eng Chem Fundam. 1965;4:17–21.

    Article  CAS  Google Scholar 

  25. van Krevelen DW, te Nijenhuis K. Properties of polymers, their correlation with chemical structure; their numerical estimation and prediction from additive group contributions. 4th ed. Amsterdam: Elsevier; 2009.

    Google Scholar 

  26. Satoh S. Heat capacity and chemical constitution. J Sci Res Inst (Tokyo). 1948;43:61–93.

    Google Scholar 

  27. Chickos JS, Hesse DG, Liebman JF. A group additivity approach for the estimation of heat capacities of organic liquids and solids at 298 K. Struct Chem. 1993;4:261–9.

    Article  CAS  Google Scholar 

  28. Goodman BT, Wilding WV, Oscarson JL, Rowley RL. Use of the DIPPR database for development of quantitative structure—Property relationship correlations: heat capacity of solid organic compounds. J Chem Eng Data. 2004;49:24–31.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was done under the financial support of Ministry of Interior of the Czech Republic, project no. VG20102014032. Authors thanks to Monika Subrtova for her help with DTA measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavla Honcová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pilar, R., Pachman, J., Matyáš, R. et al. Comparison of heat capacity of solid explosives by DSC and group contribution methods. J Therm Anal Calorim 121, 683–689 (2015). https://doi.org/10.1007/s10973-015-4611-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4611-3

Keywords

Navigation