Skip to main content
Log in

Experimental investigation and characterization of selected as-cast alloys in vertical Cu0.5Ag0.5–Al section in ternary Cu–Al–Ag system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Phase transition temperatures of selected as-cast alloys from ternary Cu–Al–Ag system with overall compositions situated alongside vertical section with equal molar ratios of Ag and Cu were experimentally investigated using differential thermal analysis. Microstructures of the as-cast samples were analyzed using scanning electron microscopy with energy-dispersive spectrometry. Experimentally obtained results were compared with the results obtained by thermodynamic calculation of phase equilibria according to CALPHAD approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ma Y, Jiang C, Deng L, Xu H. Effects of composition and thermal cycle on transformation behaviors, thermal stability and mechanical properties of Cu–Al–Ag alloy. J Mater Sci Technol. 2003;19:431–4.

    Article  CAS  Google Scholar 

  2. Gomidželović L, Pouraliakbar H, Khalaj G, Kostov A. Thermodynamic analysis of ternary Cu–Al–Ni system. J Chem Technol Metall. 2014;49:402–8.

    Google Scholar 

  3. Romčević N, Gilić M, Anžel I, Rudolf R, Mitrić M, Romčević M, Hadžić B, Joksimović D, Petrović Damjanović M, Kos M. Determination of microstructural changes by severely plastically deformed copper–aluminum alloy: optical study. J Min Metall Sect B Metall. 2014;50:61–8.

    Article  Google Scholar 

  4. Zovko Brodarac Z, Dolić N, Unkić F. Influence of copper content on microstructure developmentof AlSi9Cu3 alloy. J Min Metall Sect B Metall. 2014;50:53–60.

    Article  Google Scholar 

  5. Benke M, Mertinger V, Pekker P. Investigation of the beinitic reaction in a CuAlNiMnFe alloy. J Min Metall Sect B Metall. 2013;49:43–7.

    Article  CAS  Google Scholar 

  6. Achiţei DC, Sandu AV, Abdullah MMAB, Vizureanu P, Abdullah A. On the structure of shape memory alloys. Key Eng Mater. 2014;594–595:140–5.

    Google Scholar 

  7. Stanojevic Šimšić Z, Živković D, Manasijević D, Holjevac Grgurić T, Du Y, Gojić M, Kožuh S, Kostov A, Todorović R. Thermal analysis and microstructural investigation of Cu-rich alloys in the Cu–Al–Ag system. J Alloys Compd. 2014;612:486–92.

    Article  Google Scholar 

  8. Cimpoeşu N, Stanciu S, Vizureanu P, Cimpoeşu R, Achiţei CD, Ioniţă I. Preliminary tests of obtaining shape memory alloy thin layer through PLD technique. J Min Metall Sect B Metall. 2014;50:69–76.

    Article  Google Scholar 

  9. Campbell W, Mathews JA. The alloys of aluminum. J Am Chem Soc. 1902;24:253–66.

    Article  Google Scholar 

  10. Hultgren R, Desai PD, Hawkins DT, Gleiser M, Kelley KK. Selected values of thermodynamic properties of binary alloys. Metals Park, OH: American Society for Metals / ASM; 1973.

  11. Landolt-Börnstein. Numerical data and functional relationships in science and technology (new series). Group 4: macroscopic and technical properties of matter, vol. 5, Predel B. Phase equilibria, crystallographic and thermodynamic data of binary alloys, subvol. A: Ac-Au, Au-Zr. Berlin: Springer; 1991.

  12. Flandorfer H, Luef C, Saeed U. On the temperature dependence of the enthalpies of mixing in liquid binary (Ag, Cu, Ni) alloys. J Non Cryst Solids. 2008;354:2953–72.

    Article  CAS  Google Scholar 

  13. Flandorfer H, Rechchach M, Elmahfoudi A, Bencze L, Popovic A, Ipser H. Enthalpies of mixing of liquid systems for lead free soldering: Al–Cu–Sn system. J Chem Thermodyn. 2011;43:1612–22.

    Article  CAS  Google Scholar 

  14. Dowson AG. A new intermediate phase in the aluminum–copper system. J Inst Met. 1937;61:197–204.

    Google Scholar 

  15. Hume-Rothery W, Raynor GV, Reynolds PW, Packer HK. The constitution and structure of alloys of intermediate composition in the systems copper–indium, copper–aluminum, copper–germanium, silver–aluminum, and silver–germanium. J Inst Met. 1940;66:209–39.

    CAS  Google Scholar 

  16. Vigdorovich VN, Krestovnikov AN, Maltson MV. Microhardness investigation of sold solutions of ternary systems. Izv Akad Nauk SSSR Otd Tekh Nauk. 1958;3:110–3.

    Google Scholar 

  17. Linden G. Erneute Bestimmung des (α + β)-Zweiphasengebietes im system Cu–Al. Prakt Metall. 1972;9:3–14.

    Google Scholar 

  18. Liu XJ, Ohnuma I, Kainuma R, Ishida K. Phase equilibria in the Cu-rich portion of Cu–Al binary system. J Alloys Compd. 1998;264:201–8.

    Article  CAS  Google Scholar 

  19. Labisz K, Rdzawski Z, Pawlyta M. Microstructure evaluation of long-term aged binary Cu–Ag–Cu alloy. Arch Mater Sci Eng AMSE. 2011;49:15–24.

    Google Scholar 

  20. Liu JB, Meng L. The characteristics of Cu-12wt.%Ag filamentary microcomposite in different isothermal process. Mat Sci Eng A. 2006;418:320–5.

    Article  Google Scholar 

  21. Liu JB, Meng L, Zeng YW. Microstructure evolution and properties of Cu–Ag microcomposites with different Ag content. Mat Sci Eng A. 2006;435–436:237–44.

    Article  Google Scholar 

  22. Fitzner K, Guo Q, Wang J, Kleppa OJ. Enthalpies of liquid–liquid mixing in the systems Cu–Ag, Cu–Au and Ag–Au by using an in situ mixing device in a high temperature single-unit differential calorimeter. J Alloys Compd. 1999;291:190–200.

    Article  CAS  Google Scholar 

  23. Baier M, Chatillon-Colinet C, Mathieu JC. Détermination de l`enthalpie de formation de la phase β du système Ag-Al pur calorimétrie de dissolution dans l`aluminium liquid. Ann Chim Fr. 1981;6:291–6.

    CAS  Google Scholar 

  24. Spencer PJ, Kubasschewski O. A thermodynamic evaluation of the Ag–Al system. Mon Chem. 1987;118:155–67.

    Article  CAS  Google Scholar 

  25. Lim SS, Rossiter PL, Tibballs JE. Assessment of the Al–Ag binary phase diagram. Calphad. 1995;19:131–41.

    Article  CAS  Google Scholar 

  26. Dinsdale AT. SGTE Data for Pure Elements. Calphad. 1991;15:317–425.

    Article  CAS  Google Scholar 

  27. Hillert M, Averbach BL, Cohen M. Thermodynamic properties of solid aluminum–silver alloys. Acta Met. 1956;4:31–6.

    Article  CAS  Google Scholar 

  28. Witusiewicz VT, Hecht U, Fries SG, Rex S. The Ag–Al–Cu system Part I: reassessment of the constituent binaries on the basis of new experimental data. J Alloys Compd. 2004;385:133–43.

    CAS  Google Scholar 

  29. Adorno AT, Silva RAG. Effect of Ag additions on the reverse martensitic transformation in the Cu-10 mass% Al alloy. J Therm Anal Calorim. 2006;83:241–6.

    Article  CAS  Google Scholar 

  30. Silva RAG, Adorno AT, Magdalena AG, Carvalho TM, Stipcich M, Cuniberti A, Castro ML. Thermal behavior of the Cu-22.55 at.% Al with small Ag additions. J Therm Anal Calorim. 2011;103:459–63.

    Article  CAS  Google Scholar 

  31. Adorno AT, Silva RAG. Aging behavior in the Cu-10wt.% Al and Cu-10wt.% Al-4wt.% Ag alloys. J Alloys Compd. 2009;473:139–44.

    Article  CAS  Google Scholar 

  32. Silva RAG, Paganottia A, Gama S, Adorno AT, Carvalho TM, Santos CMA. Investigation of thermal, mechanical and magnetic behaviors in the Cu-11wt.%Al alloy with Ag and Mn additions. Mater Charact. 2013;75:194–9.

    Article  CAS  Google Scholar 

  33. Silva AG, Adorno AT, Carvalho TM, Magdalena AG, Santos CMA. Precipitation reaction in alpha-Cu–Al–Ag alloys. Matéria (Rio J.). 2011;16:747–53.

    Article  CAS  Google Scholar 

  34. Adorno AT, Benedetti AV, Silva RAG, Blanco M. Influence of the Al content on the phase transformations in Cu–Al–Ag alloys. Eclet Quim. 2003;28:33–8.

    Article  CAS  Google Scholar 

  35. Adorno AT, Guerreiro MR, Benedetti AV. Influence of silver additions on the aging characteristics of the Cu-10.4at.percent-Al alloy. J Alloys Compd. 1998;268:122–9.

    Article  CAS  Google Scholar 

  36. Flandorfer H, Hayer E. Partial and integral enthalpy of molten Ag–Al–Cu alloys. J Alloys Compd. 2000;296:112–8.

    Article  CAS  Google Scholar 

  37. Witusiewicz WT, Hecht U, Rex S, Sommer F. Partial and integral enthalpies of mixing of liquid Ag–Al–Cu and Ag–Cu–Zn. J Alloys Compd. 2002;337:189–201.

    Article  CAS  Google Scholar 

  38. Hecht U, Witusiewicz VT, Drevermann A, Rex S. Orientation relationship in univariant in Al–Cu–Ag eutectic. Trans Indian Inst Met. 2005;58:545–51.

    CAS  Google Scholar 

  39. Živković D, Holjevac Grgurić T, Gojić M, Ćubela D, Stanojević Šimšić Z, Kostov A, Kožuh S. Calculation of thermodynamic properties of Cu–Al–(Ag, Au) shape memory alloy systems. Trans Indian Inst Met. 2014;67(2):285–9.

    Article  Google Scholar 

  40. Chang YA, Goldberg D, Neumann JP. Phase diagrams and thermodynamic properties of ternary copper–silver systems. J Phys Chem Ref Data. 1977;6:621–73.

    Article  CAS  Google Scholar 

  41. Witusiewicz VT, Hecht U, Fries SG, Rex S. The Ag–Al–Cu system II. A thermodynamic evaluation of the ternary system. J Alloys Compd. 2005;387:217–27.

    Article  CAS  Google Scholar 

  42. Raghavan V. Ag–Al–Cu (Silver–Aluminum–Copper). JPEDAV. 2008;29:256–8.

    Article  CAS  Google Scholar 

  43. Böyük U, Maraslı N, Çadırlı E, Kaya H, Keslioglu K. Variations of microhardness with solidification parameters and electrical resistivity with temperature for Al–Cu–Ag eutectic alloy. Curr Appl Phys. 2012;12:7–10.

    Article  Google Scholar 

  44. Guilemany JM, Fernandez J, Zhang XM. TEM study on the microstructure of Cu–Al–Ag shape memory alloys. Mater Sci Eng A. 2006;438–440:726–9.

    Article  Google Scholar 

  45. Böyük U, Marash N, Kaya H, Çadırlı E, Keslioglu K. Directional solidification of Al–Cu–Ag alloy. Appl Phys A. 2009;95:923–32.

    Article  Google Scholar 

  46. Genau L, Ratke L. Crystal orientation and morphology in Al–Ag–Cu ternary eutectic. The 3rd International Conference on Advances in Solidification Processes. IOP Conference series: Mat Sci Eng A 2011;012032 doi:10.1088/1757-899X/27/1/012032.

  47. De Wilde J, Nagels E, Lemoisson F, Froyen L. Unconstrained growth along a ternary eutectic solidification path in Al–Cu–Ag: preparation of a MAXUS sounding rocket experiment. Mater Sci Eng A. 2005;413–414:514–20.

    Article  Google Scholar 

  48. De Wilde J, Froyen L, Witusiewicz VT, Hecht U. Two-phase planar and lamellar coupled growth along the univariant eutectic reaction in ternary alloys: an analytical approach and application to the Al–Cu–Ag system. J Appl Phys. 2005;97:1–9.

    Article  Google Scholar 

  49. Saunders N, Miodownik AP. CALPHAD (a comprehensive guide). Oxford: Elsevier Science; 1998.

    Google Scholar 

  50. Lukas HL, Fries SG, Sundman B. Computational thermodynamics: the calphad method. Cambridge: Cambridge University Press; 2007.

    Book  Google Scholar 

  51. Cao W, Chen SL, Zhang F, Wu K, Yang Y, Chang YA, Schmid-Fetzer R, Oates WA. PANDAT software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation. Calphad. 2009;33:328–42.

    Article  CAS  Google Scholar 

  52. Dinsdale AT. SGTE Unary Database, Version 4.4. 2002 (www.sgte.org).

  53. Balanović L, Živković D, Manasijević D, Minić D, Ćosović V, Talijan N. Calorimetric investigation of Al–Zn alloys using Oelsen method. J Therm Anal Calorim. 2014;118:1287–92.

    Article  Google Scholar 

  54. Balanović L, Živković D, Manasijević D, Minić D, Marjanović B. Calorimetric study and thermal analysis of Al–Sn system. J Therm Anal Calorim. 2013;111:1431–5.

    Article  Google Scholar 

  55. Boettinger WJ, Kattner UR, Moon KW, Perepezko JH. DTA and heat flux DSC measurements of alloys melting and freezing. In: Zhao JC, editor. Methods for phase diagram determination. Oxford: Elsevier; 2007. p. 152–222.

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Ministry of Education, Science and Technological Development, Republic of Serbia, under the Projects OI172037, TR34005 and TR34004, which is highly acknowledged. Also, the study was conducted in the frame of ‘‘Development of new shape memory alloys” Project SVIJET—Development Program by University of Zagreb (Croatia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragana Živković.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šimšić, Z.S., Manasijević, D., Živković, D. et al. Experimental investigation and characterization of selected as-cast alloys in vertical Cu0.5Ag0.5–Al section in ternary Cu–Al–Ag system. J Therm Anal Calorim 120, 149–155 (2015). https://doi.org/10.1007/s10973-015-4576-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4576-2

Keywords

Navigation