Skip to main content
Log in

Adsorption microcalorimetry characterization of microporous and mesoporous zeolites for soybean oil transesterification

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The combined influence of the catalyst acidity and porosity features on the transesterification of soybean oil with methanol was investigated over micro/mesoporous hierarchical Beta (Si/Al = 18 and 30), conventional microporous Beta (Si/Al = 23 and 43) and MCM-22 (Si/Al = 40) zeolites. All the catalysts were characterized as to their structure and texture by X-ray diffraction and N2 physisorption, respectively. Their acid features were assessed by adsorption microcalorimetry, using NH3 as probe molecule. Catalytic testing was carried out in batch at 453 K and 4 MPa. The nature of the organic material adsorbed/trapped in the catalyst during reaction (“coke”) was determined by GC/MS after solvent extraction. Fatty acid methyl esters (FAMEs) yields of 22–40 mol% were attained with a reaction time of 24 h over the conventional Beta and MCM-22 samples, whereas remarkably higher values (50–70 mol%) were observed over the hierarchical Beta zeolites. For both the hierarchical and conventional zeolites, the initial FAMEs yield was found to increase with the concentration of the acid sites able to adsorb ammonia with strength higher than ca. 100 kJ mol−1. In comparison with the conventional zeolites of similar acidity, the methyl esters yield over the hierarchical zeolites was twice to three times higher, as a consequence of the enhanced reactants diffusion in their secondary mesoporous system. The presence of free fatty acids in the reaction mixture and the nature of the coke revealed that several acid-catalyzed reactions and thermal degradation processes can occur simultaneously with transesterification. A general scheme for the different reaction pathways for the oil transformation was outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1

Similar content being viewed by others

References

  1. Van Gerpen J. Biodiesel processing and production. Fuel Process Technol. 2005;86:1097–107.

    Article  Google Scholar 

  2. Freedman B, Butterfield RO, Pryde EH. Transesterification Kinetics of Soybean Oil 1. J Am Oil Chem Soc. 1986;63:1375–80.

    Article  CAS  Google Scholar 

  3. Lingfeng C, Guomin X, Bo X, Guangyuan T. Transesterification of cottonseed oil to biodiesel by using heterogeneous solid basic catalysts. Energy Fuels. 2007;21:3740–3.

    Article  Google Scholar 

  4. Kusdiana D, Saka S. Effects of water on biodiesel fuel production by supercritical methanol treatment. Bioresour Technol. 2004;91:289–95.

    Article  CAS  Google Scholar 

  5. Ma F, Hanna M. Biodiesel production: a review. Bioresour Technol. 1999;70:1–15.

    Article  CAS  Google Scholar 

  6. Wilson K, Lee AF. Rational design of heterogeneous catalysts for biodiesel synthesis. Catal Sci Technol. 2012;2:884–97.

    Article  CAS  Google Scholar 

  7. Suppes GJ, Dasari MA, Doskocil EJ, Mankidy PJ, Goff MJ. Transesterification of soybean oil with zeolite and metal catalysts. Appl Catal A Gen. 2004;257:213–23.

    Article  CAS  Google Scholar 

  8. Gelbard G, Vielfaure-Joly F. Polynitrogen strong bases as immobilized catalysts for the transesterification of vegetable oils. CR Acad Sci Ser IIc Chim. 2000;3:563–7.

    CAS  Google Scholar 

  9. Schuchardt U, Sercheli R, Vargas RM. Transesterification of vegetable oil: a review. J Braz Chem Soc. 1998;9(1):199–210.

    CAS  Google Scholar 

  10. Sercheli R, Vargas RM, Schuchardt U. Alkylguanidine-catalyzed heterogeneous transesterification of soybean oil. J Am Oil Chem Soc. 1999;76(10):1207–10.

    Article  CAS  Google Scholar 

  11. Meloni D, Monaci R, Zedde Z, Cutrufello MG, Fiorilli S, Ferino I. Transesterification of soybean oil on guanidine base-functionalized SBA-15 catalysts. Appl Catal B Environ. 2011;102:505–14.

    Article  CAS  Google Scholar 

  12. Dossin TF, Reyniers MF, Marin GB. Kinetics of heterogeneously MgO-catalyzed transesterification. Appl Catal B Environ. 2006;62:35–45.

    Article  CAS  Google Scholar 

  13. Bart JCJ, Palmeri N, Cavallaro S. Biodiesel science and technology. From soil to oil. Boca Raton: CRC Press; 2011. p. 322–85.

    Google Scholar 

  14. Aranda DAG, De Goncalves JA, Peres JS, Ramos ALD, de Melo RCA Jr, Antunes OAC, Furtado NC, Taft CA. The use of acids, niobium oxide, and zeolite catalysts for esterification reactions. J Phys Org Chem. 2009;22:709–16.

    Article  CAS  Google Scholar 

  15. Canakci M, Van Gerpen J. Biodiesel production from oils and fats with high free fatty acids. Trans ASAE. 2001;41:1429–36.

    Google Scholar 

  16. Dos Reis SCM, Lachter ER, Nascimento RSV, Rodriguez JA, Reid MG. Transesterification of Brazilian vegetable oils with methanol over ion-exchange resins. J Am Oil Chem Soc. 2005;82:661–5.

    Article  Google Scholar 

  17. Guerreiro L, Castanheiro JE, Fonseca IM, Martin-Aranda RM, Ramos AM, Vital J. Transesterification of soybean oil over sulfonic acid functionalized polymeric membranes. Catal Today. 2006;118:166–71.

    Article  CAS  Google Scholar 

  18. Garcia CM, Teixeira S, Marciniuk L, Schuchardt U. Transesterification of soybean oil catalyzed by sulphate zirconia. Bioresour Technol. 2008;99:6608–13.

    Article  CAS  Google Scholar 

  19. Sunita G, Devassy BM, Vinu A, Sawant DP, Balasubramanian VV, Halligudi SB. Synthesis of biodiesel over zirconia-supported isopoly and heteropoly tungstate catalysts. Catal Commun. 2008;9:696–702.

    Article  CAS  Google Scholar 

  20. Shu Q, Yang B, Yuan H, Qing S, Zhu G. Synthesis of biodiesel from soybean oil and methanol catalyzed by zeolite beta modified with La3+. Catal Commun. 2007;8:2159–65.

    Article  CAS  Google Scholar 

  21. Ferino I, Meloni D, Monaci R, Rombi E, Solinas V. Conversion of sec-butylbenzene over H-beta zeolites. J Mol Catal A. 2003;192:171–87.

    Article  CAS  Google Scholar 

  22. Leonowicz ME, Lawton JA, Lawton SL, Rubin MK. MCM-22: a molecular sieve with two independent multidimensional channel systems. Science. 1994;264:1910–3.

    Article  CAS  Google Scholar 

  23. López DE, Goodwin JG Jr, Bruce DA. Transesterification of triacetin with methanol on Nafion acid resins. J Catal. 2007;245:381–91.

    Article  Google Scholar 

  24. López DE, Goodwin JG Jr, Bruce DA, Lotero E. Transesterification of triacetin with methanol on solid and base catalysts. Appl Catal A Gen. 2005;295:97–105.

    Article  Google Scholar 

  25. Gravelle PC. Heat-flow microcalorimetry and its application to heterogeneous catalysis. Adv Catal. 1972;2:191–263.

    Google Scholar 

  26. Auroux A. Thermal methods: calorimetry, differential thermal analysis, and thermogravimetry [for catalyst characterization]. In: Imelik B, Védrine JC, editors. Catalyst characterization, fundamental and applied catalysis, physical techniques for solid materials. New York: Plenum Press; 1994. p. 611–50.

  27. Cardona-Martinez N, Dumesic JA. Applications of adsorption microcalorimetry to the study of heterogeneous catalysis. Adv Catal. 1992;38:149–244.

    CAS  Google Scholar 

  28. Solinas V, Ferino I. Microcalorimetric characterization of acid–basic catalysts. Catal Today. 1998;41:179–89.

    Article  CAS  Google Scholar 

  29. Meloni D, Monaci R, Rombi E, Solinas V, Guimon C, Martinez H, Fechete I, Dumitriu E. Synthesis and characterization of MCM-22 zeolites for the N2O oxidation of benzene to phenol. Stud Surf Sci Catal. 2002;142:167–74.

    Article  Google Scholar 

  30. Wadlinger RL, Kerr GT, Rosinski EJ. Catalytic composition of a crystalline zeolite. Mobil Oil Corporation. US Patent 3,308,069; 1967.

  31. Camblor MA, Pérez-Pariente J. Crystallization of zeolite beta: effect of Na and K ions. Zeolites. 1991;11:202–10.

    Article  CAS  Google Scholar 

  32. Möller K, Yilmaz B, Mǜller U, Bein T. Hierarchical zeolite beta via nanoparticle assembly with a cationic polymer. Chem Mater. 2011;23:4301–10.

    Article  Google Scholar 

  33. Rouquerol F, Rouquerol J, Singh K. Adsorption by powders and porous solids, principles, methodology and applications. London: Academic Press; 1999.

    Google Scholar 

  34. Magnoux P, Roger P, Canaff C, Fouché V, Gnep NS, Guisnet M. New technique for the characterization of carbonaceous compounds responsible for zeolite deactivation. Stud Surf Sci Catal. 1987;34:317–33.

    Article  CAS  Google Scholar 

  35. Delitala C, Alba MD, Becerro AI, Delpiano D, Meloni D, Musu E, Ferino I. Synthesis of MCM-22 zeolites of different Si/Al ratio and their structural, morphological and textural characterisation. Micropor Mesopor Mater. 2009;118:1–10.

    Article  CAS  Google Scholar 

  36. Delitala C, Cadoni E, Delpiano D, Meloni D, Melis S, Ferino I. Liquid-phase thiophene adsorption on MCM-22 zeolite and activated carbon. Micropor Mesopor Mater. 2008;110:197–215.

    Article  CAS  Google Scholar 

  37. Treacy MMJ, Higgins JB. Collection of simulated XRD powder patterns for zeolites. 4th ed. Amsterdam: Elsevier; 2001.

    Google Scholar 

  38. Möller K, Yilmaz B, Jacubinas RM, Müller U, Bein T. One-step synthesis of hierarchical zeolite beta via network formation of uniform nanocrystals. J Am Chem Soc. 2011;133:5284–95.

    Article  Google Scholar 

  39. Wang L, Zhang Z, Yin C, Shan Z, Xiao FS. Hierarchical mesoporous zeolites with controllable mesoporosity template from cationic polymers. Micropor Mesopor Mater. 2010;131:58–67.

    Article  CAS  Google Scholar 

  40. Cardona-Martinez N, Dumesic JA. Acid strength of silica-alumina and silica studied by microcalorimetric measurements of pyridine adsorption. J Catal. 1990;125:427–44.

    Article  CAS  Google Scholar 

  41. Colón G, Ferino I, Rombi E, Selli E, Forni L, Magnoux P, Guisnet M. Liquid-phase alkylation of naphthalene by isopropanol over zeolites. Part 1: HY zeolites. Appl Catal A Gen. 1998;168:81–92.

    Article  Google Scholar 

  42. Lotero E, Liu Y, Lopez DE, Suwannakarn K, Bruce DA, Goodwin JG Jr. Synthesis of biodiesel via acid catalysis. Ind Eng Chem Res. 2005;44:5323–63.

    Article  Google Scholar 

  43. Lin VSY, Radu DR. Use of functionalized mesoporous silicates to esterify fatty acids and transesterify oils. US Patent 7,122,688 B2; 2006.

  44. Zabeti M, Daud WMAW, Aroua MK. Fuel Process Technol. 2009;90:770–7.

    Article  CAS  Google Scholar 

  45. Ejikeme PM, Anyaogu ID, Ejikeme CL, Nwafor NP, Egbuonu CAC, Ukogu K, Ibemesi JA. Catalysis in biodiesel production by transesterification processes-an insight. E J Chem. 2010;7:1120–32.

    Article  CAS  Google Scholar 

  46. Corma A, Huber GW, Sauvanaud L, O’Connor P. Biomass to chemicals: catalytic conversion of glycerol/water mixtures into acrolein, reaction network. J Catal. 2008;257:163–71.

    Article  CAS  Google Scholar 

  47. Katryniok B, Paul S, Bellière-Baca V, Reye P, Dumeignil F. Glycerol dehydration to acrolein in the context of new uses of glycerol. Green Chem. 2010;12:2079–98.

    Article  CAS  Google Scholar 

  48. Neher A, Haas T. Process for the production of acrolein. Degussa Aktiengesellschaft (Frankfurt, DE). US Patent 5,387,720; 1993.

  49. Baxa S, Hakkaa MH, Glaudea PA, Herbineta O, Battin-Leclerca F. Experimental study of the oxidation of methyl oleate in a jet stirred reactor. Combust Flame. 2010;157:1220–9.

    Article  Google Scholar 

  50. Hakka MH, Glaude PA, Herbinet O, Battin-Leclerc F. Experimental study of the oxidation of large surrogates for diesel and biodiesel fuels. Combust Flame. 2009;156:2129–44.

    Article  CAS  Google Scholar 

  51. Silva ES, Conceicão MM, Cavalcanti EHS, Fernandes VJ Jr, Medeiros ACD, Souza AG. Analysis of thermal and oxidative stability of biodiesel from Jatropha curcas L. and beef tallow. J Therm Anal Calorim. 2013;113:437–42.

    Article  CAS  Google Scholar 

  52. Frankel EN. Volatile lipid oxidation products. Prog Lipid Res. 1983;22:1–33.

    Article  CAS  Google Scholar 

  53. Zhang Q, Saleh ASM, Chen J, Sun P, Shen Q. Monitoring of thermal behavior and decomposition products of soybean oil. An application of synchronous thermal analyzer coupled with Fourier transform infrared spectrometry and quadrupole mass spectrometry. J Therm Anal Calorim. 2014;115:19–29.

    Article  CAS  Google Scholar 

  54. Medina E, Bringué R, Tejero J, Iborra M, Fite C. Conversion of 1-hexanol to di-n-hexyl ether on acidic catalysts. Appl Catal A Gen. 2010;374:41–7.

    Article  CAS  Google Scholar 

  55. Van Grieken R, Escola JM, Moreno J, Rodríguez R. Liquid phase oligomerization of 1-hexene over different mesoporous aluminosilicates (Al-MTS, Al-MCM-41 and Al-SBA-15) and micrometer/nanometer HZSM-5 zeolites. Appl Catal A Gen. 2006;305:176–88.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Italo Ferino.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1790 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meloni, D., Monaci, R., Perra, D. et al. Adsorption microcalorimetry characterization of microporous and mesoporous zeolites for soybean oil transesterification. J Therm Anal Calorim 121, 1139–1149 (2015). https://doi.org/10.1007/s10973-015-4557-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4557-5

Keywords

Navigation