Journal of Thermal Analysis and Calorimetry

, Volume 121, Issue 3, pp 1139–1149 | Cite as

Adsorption microcalorimetry characterization of microporous and mesoporous zeolites for soybean oil transesterification

  • Daniela Meloni
  • Roberto Monaci
  • Danio Perra
  • Maria Giorgia Cutrufello
  • Elisabetta Rombi
  • Italo Ferino


The combined influence of the catalyst acidity and porosity features on the transesterification of soybean oil with methanol was investigated over micro/mesoporous hierarchical Beta (Si/Al = 18 and 30), conventional microporous Beta (Si/Al = 23 and 43) and MCM-22 (Si/Al = 40) zeolites. All the catalysts were characterized as to their structure and texture by X-ray diffraction and N2 physisorption, respectively. Their acid features were assessed by adsorption microcalorimetry, using NH3 as probe molecule. Catalytic testing was carried out in batch at 453 K and 4 MPa. The nature of the organic material adsorbed/trapped in the catalyst during reaction (“coke”) was determined by GC/MS after solvent extraction. Fatty acid methyl esters (FAMEs) yields of 22–40 mol% were attained with a reaction time of 24 h over the conventional Beta and MCM-22 samples, whereas remarkably higher values (50–70 mol%) were observed over the hierarchical Beta zeolites. For both the hierarchical and conventional zeolites, the initial FAMEs yield was found to increase with the concentration of the acid sites able to adsorb ammonia with strength higher than ca. 100 kJ mol−1. In comparison with the conventional zeolites of similar acidity, the methyl esters yield over the hierarchical zeolites was twice to three times higher, as a consequence of the enhanced reactants diffusion in their secondary mesoporous system. The presence of free fatty acids in the reaction mixture and the nature of the coke revealed that several acid-catalyzed reactions and thermal degradation processes can occur simultaneously with transesterification. A general scheme for the different reaction pathways for the oil transformation was outlined.


Soybean oil Transesterification Hierarchical Beta Acidity Microcalorimetry 

Supplementary material

10973_2015_4557_MOESM1_ESM.doc (1.7 mb)
Supplementary material 1 (DOC 1790 kb)


  1. 1.
    Van Gerpen J. Biodiesel processing and production. Fuel Process Technol. 2005;86:1097–107.CrossRefGoogle Scholar
  2. 2.
    Freedman B, Butterfield RO, Pryde EH. Transesterification Kinetics of Soybean Oil 1. J Am Oil Chem Soc. 1986;63:1375–80.CrossRefGoogle Scholar
  3. 3.
    Lingfeng C, Guomin X, Bo X, Guangyuan T. Transesterification of cottonseed oil to biodiesel by using heterogeneous solid basic catalysts. Energy Fuels. 2007;21:3740–3.CrossRefGoogle Scholar
  4. 4.
    Kusdiana D, Saka S. Effects of water on biodiesel fuel production by supercritical methanol treatment. Bioresour Technol. 2004;91:289–95.CrossRefGoogle Scholar
  5. 5.
    Ma F, Hanna M. Biodiesel production: a review. Bioresour Technol. 1999;70:1–15.CrossRefGoogle Scholar
  6. 6.
    Wilson K, Lee AF. Rational design of heterogeneous catalysts for biodiesel synthesis. Catal Sci Technol. 2012;2:884–97.CrossRefGoogle Scholar
  7. 7.
    Suppes GJ, Dasari MA, Doskocil EJ, Mankidy PJ, Goff MJ. Transesterification of soybean oil with zeolite and metal catalysts. Appl Catal A Gen. 2004;257:213–23.CrossRefGoogle Scholar
  8. 8.
    Gelbard G, Vielfaure-Joly F. Polynitrogen strong bases as immobilized catalysts for the transesterification of vegetable oils. CR Acad Sci Ser IIc Chim. 2000;3:563–7.Google Scholar
  9. 9.
    Schuchardt U, Sercheli R, Vargas RM. Transesterification of vegetable oil: a review. J Braz Chem Soc. 1998;9(1):199–210.Google Scholar
  10. 10.
    Sercheli R, Vargas RM, Schuchardt U. Alkylguanidine-catalyzed heterogeneous transesterification of soybean oil. J Am Oil Chem Soc. 1999;76(10):1207–10.CrossRefGoogle Scholar
  11. 11.
    Meloni D, Monaci R, Zedde Z, Cutrufello MG, Fiorilli S, Ferino I. Transesterification of soybean oil on guanidine base-functionalized SBA-15 catalysts. Appl Catal B Environ. 2011;102:505–14.CrossRefGoogle Scholar
  12. 12.
    Dossin TF, Reyniers MF, Marin GB. Kinetics of heterogeneously MgO-catalyzed transesterification. Appl Catal B Environ. 2006;62:35–45.CrossRefGoogle Scholar
  13. 13.
    Bart JCJ, Palmeri N, Cavallaro S. Biodiesel science and technology. From soil to oil. Boca Raton: CRC Press; 2011. p. 322–85.Google Scholar
  14. 14.
    Aranda DAG, De Goncalves JA, Peres JS, Ramos ALD, de Melo RCA Jr, Antunes OAC, Furtado NC, Taft CA. The use of acids, niobium oxide, and zeolite catalysts for esterification reactions. J Phys Org Chem. 2009;22:709–16.CrossRefGoogle Scholar
  15. 15.
    Canakci M, Van Gerpen J. Biodiesel production from oils and fats with high free fatty acids. Trans ASAE. 2001;41:1429–36.Google Scholar
  16. 16.
    Dos Reis SCM, Lachter ER, Nascimento RSV, Rodriguez JA, Reid MG. Transesterification of Brazilian vegetable oils with methanol over ion-exchange resins. J Am Oil Chem Soc. 2005;82:661–5.CrossRefGoogle Scholar
  17. 17.
    Guerreiro L, Castanheiro JE, Fonseca IM, Martin-Aranda RM, Ramos AM, Vital J. Transesterification of soybean oil over sulfonic acid functionalized polymeric membranes. Catal Today. 2006;118:166–71.CrossRefGoogle Scholar
  18. 18.
    Garcia CM, Teixeira S, Marciniuk L, Schuchardt U. Transesterification of soybean oil catalyzed by sulphate zirconia. Bioresour Technol. 2008;99:6608–13.CrossRefGoogle Scholar
  19. 19.
    Sunita G, Devassy BM, Vinu A, Sawant DP, Balasubramanian VV, Halligudi SB. Synthesis of biodiesel over zirconia-supported isopoly and heteropoly tungstate catalysts. Catal Commun. 2008;9:696–702.CrossRefGoogle Scholar
  20. 20.
    Shu Q, Yang B, Yuan H, Qing S, Zhu G. Synthesis of biodiesel from soybean oil and methanol catalyzed by zeolite beta modified with La3+. Catal Commun. 2007;8:2159–65.CrossRefGoogle Scholar
  21. 21.
    Ferino I, Meloni D, Monaci R, Rombi E, Solinas V. Conversion of sec-butylbenzene over H-beta zeolites. J Mol Catal A. 2003;192:171–87.CrossRefGoogle Scholar
  22. 22.
    Leonowicz ME, Lawton JA, Lawton SL, Rubin MK. MCM-22: a molecular sieve with two independent multidimensional channel systems. Science. 1994;264:1910–3.CrossRefGoogle Scholar
  23. 23.
    López DE, Goodwin JG Jr, Bruce DA. Transesterification of triacetin with methanol on Nafion acid resins. J Catal. 2007;245:381–91.CrossRefGoogle Scholar
  24. 24.
    López DE, Goodwin JG Jr, Bruce DA, Lotero E. Transesterification of triacetin with methanol on solid and base catalysts. Appl Catal A Gen. 2005;295:97–105.CrossRefGoogle Scholar
  25. 25.
    Gravelle PC. Heat-flow microcalorimetry and its application to heterogeneous catalysis. Adv Catal. 1972;2:191–263.Google Scholar
  26. 26.
    Auroux A. Thermal methods: calorimetry, differential thermal analysis, and thermogravimetry [for catalyst characterization]. In: Imelik B, Védrine JC, editors. Catalyst characterization, fundamental and applied catalysis, physical techniques for solid materials. New York: Plenum Press; 1994. p. 611–50.Google Scholar
  27. 27.
    Cardona-Martinez N, Dumesic JA. Applications of adsorption microcalorimetry to the study of heterogeneous catalysis. Adv Catal. 1992;38:149–244.Google Scholar
  28. 28.
    Solinas V, Ferino I. Microcalorimetric characterization of acid–basic catalysts. Catal Today. 1998;41:179–89.CrossRefGoogle Scholar
  29. 29.
    Meloni D, Monaci R, Rombi E, Solinas V, Guimon C, Martinez H, Fechete I, Dumitriu E. Synthesis and characterization of MCM-22 zeolites for the N2O oxidation of benzene to phenol. Stud Surf Sci Catal. 2002;142:167–74.CrossRefGoogle Scholar
  30. 30.
    Wadlinger RL, Kerr GT, Rosinski EJ. Catalytic composition of a crystalline zeolite. Mobil Oil Corporation. US Patent 3,308,069; 1967.Google Scholar
  31. 31.
    Camblor MA, Pérez-Pariente J. Crystallization of zeolite beta: effect of Na and K ions. Zeolites. 1991;11:202–10.CrossRefGoogle Scholar
  32. 32.
    Möller K, Yilmaz B, Mǜller U, Bein T. Hierarchical zeolite beta via nanoparticle assembly with a cationic polymer. Chem Mater. 2011;23:4301–10.CrossRefGoogle Scholar
  33. 33.
    Rouquerol F, Rouquerol J, Singh K. Adsorption by powders and porous solids, principles, methodology and applications. London: Academic Press; 1999.Google Scholar
  34. 34.
    Magnoux P, Roger P, Canaff C, Fouché V, Gnep NS, Guisnet M. New technique for the characterization of carbonaceous compounds responsible for zeolite deactivation. Stud Surf Sci Catal. 1987;34:317–33.CrossRefGoogle Scholar
  35. 35.
    Delitala C, Alba MD, Becerro AI, Delpiano D, Meloni D, Musu E, Ferino I. Synthesis of MCM-22 zeolites of different Si/Al ratio and their structural, morphological and textural characterisation. Micropor Mesopor Mater. 2009;118:1–10.CrossRefGoogle Scholar
  36. 36.
    Delitala C, Cadoni E, Delpiano D, Meloni D, Melis S, Ferino I. Liquid-phase thiophene adsorption on MCM-22 zeolite and activated carbon. Micropor Mesopor Mater. 2008;110:197–215.CrossRefGoogle Scholar
  37. 37.
    Treacy MMJ, Higgins JB. Collection of simulated XRD powder patterns for zeolites. 4th ed. Amsterdam: Elsevier; 2001.Google Scholar
  38. 38.
    Möller K, Yilmaz B, Jacubinas RM, Müller U, Bein T. One-step synthesis of hierarchical zeolite beta via network formation of uniform nanocrystals. J Am Chem Soc. 2011;133:5284–95.CrossRefGoogle Scholar
  39. 39.
    Wang L, Zhang Z, Yin C, Shan Z, Xiao FS. Hierarchical mesoporous zeolites with controllable mesoporosity template from cationic polymers. Micropor Mesopor Mater. 2010;131:58–67.CrossRefGoogle Scholar
  40. 40.
    Cardona-Martinez N, Dumesic JA. Acid strength of silica-alumina and silica studied by microcalorimetric measurements of pyridine adsorption. J Catal. 1990;125:427–44.CrossRefGoogle Scholar
  41. 41.
    Colón G, Ferino I, Rombi E, Selli E, Forni L, Magnoux P, Guisnet M. Liquid-phase alkylation of naphthalene by isopropanol over zeolites. Part 1: HY zeolites. Appl Catal A Gen. 1998;168:81–92.CrossRefGoogle Scholar
  42. 42.
    Lotero E, Liu Y, Lopez DE, Suwannakarn K, Bruce DA, Goodwin JG Jr. Synthesis of biodiesel via acid catalysis. Ind Eng Chem Res. 2005;44:5323–63.CrossRefGoogle Scholar
  43. 43.
    Lin VSY, Radu DR. Use of functionalized mesoporous silicates to esterify fatty acids and transesterify oils. US Patent 7,122,688 B2; 2006.Google Scholar
  44. 44.
    Zabeti M, Daud WMAW, Aroua MK. Fuel Process Technol. 2009;90:770–7.CrossRefGoogle Scholar
  45. 45.
    Ejikeme PM, Anyaogu ID, Ejikeme CL, Nwafor NP, Egbuonu CAC, Ukogu K, Ibemesi JA. Catalysis in biodiesel production by transesterification processes-an insight. E J Chem. 2010;7:1120–32.CrossRefGoogle Scholar
  46. 46.
    Corma A, Huber GW, Sauvanaud L, O’Connor P. Biomass to chemicals: catalytic conversion of glycerol/water mixtures into acrolein, reaction network. J Catal. 2008;257:163–71.CrossRefGoogle Scholar
  47. 47.
    Katryniok B, Paul S, Bellière-Baca V, Reye P, Dumeignil F. Glycerol dehydration to acrolein in the context of new uses of glycerol. Green Chem. 2010;12:2079–98.CrossRefGoogle Scholar
  48. 48.
    Neher A, Haas T. Process for the production of acrolein. Degussa Aktiengesellschaft (Frankfurt, DE). US Patent 5,387,720; 1993.Google Scholar
  49. 49.
    Baxa S, Hakkaa MH, Glaudea PA, Herbineta O, Battin-Leclerca F. Experimental study of the oxidation of methyl oleate in a jet stirred reactor. Combust Flame. 2010;157:1220–9.CrossRefGoogle Scholar
  50. 50.
    Hakka MH, Glaude PA, Herbinet O, Battin-Leclerc F. Experimental study of the oxidation of large surrogates for diesel and biodiesel fuels. Combust Flame. 2009;156:2129–44.CrossRefGoogle Scholar
  51. 51.
    Silva ES, Conceicão MM, Cavalcanti EHS, Fernandes VJ Jr, Medeiros ACD, Souza AG. Analysis of thermal and oxidative stability of biodiesel from Jatropha curcas L. and beef tallow. J Therm Anal Calorim. 2013;113:437–42.CrossRefGoogle Scholar
  52. 52.
    Frankel EN. Volatile lipid oxidation products. Prog Lipid Res. 1983;22:1–33.CrossRefGoogle Scholar
  53. 53.
    Zhang Q, Saleh ASM, Chen J, Sun P, Shen Q. Monitoring of thermal behavior and decomposition products of soybean oil. An application of synchronous thermal analyzer coupled with Fourier transform infrared spectrometry and quadrupole mass spectrometry. J Therm Anal Calorim. 2014;115:19–29.CrossRefGoogle Scholar
  54. 54.
    Medina E, Bringué R, Tejero J, Iborra M, Fite C. Conversion of 1-hexanol to di-n-hexyl ether on acidic catalysts. Appl Catal A Gen. 2010;374:41–7.CrossRefGoogle Scholar
  55. 55.
    Van Grieken R, Escola JM, Moreno J, Rodríguez R. Liquid phase oligomerization of 1-hexene over different mesoporous aluminosilicates (Al-MTS, Al-MCM-41 and Al-SBA-15) and micrometer/nanometer HZSM-5 zeolites. Appl Catal A Gen. 2006;305:176–88.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Daniela Meloni
    • 1
  • Roberto Monaci
    • 1
  • Danio Perra
    • 1
  • Maria Giorgia Cutrufello
    • 1
  • Elisabetta Rombi
    • 1
  • Italo Ferino
    • 1
  1. 1.Dipartimento di Scienze ChimicheUniversità di CagliariMonserratoItaly

Personalised recommendations