Skip to main content
Log in

Cu-alloying effect on crystallization kinetics of Ti41Zr25Be28Fe6 bulk metallic glass

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Compared with Ti41Zr25Be28Fe6 bulk metallic glass, (Ti41Zr25Be28Fe6)93Cu7 glassy alloy possesses a much narrower supercooled liquid region but the glass-forming ability is dramatically improved. Isochronal and isothermal differential scanning calorimetry measurements were adopted to investigate Cu-alloying effect on the crystallization transformation kinetics of Ti41Zr25Be28Fe6 glassy alloy. It is found that Cu alloying increases the activation energies of Ti41Zr25Be28Fe6 glassy alloy for glass transition and crystallization in continuous heating. Moreover, the isothermal activation energy of (Ti41Zr25Be28Fe6)93Cu7 glassy alloy increases as process of crystallization transformation, while Cu-free alloy exhibits a contrary tendency. The addition of Cu also decreases the Avrami exponent of the base alloy, resulting in the suppression of crystal nucleation and growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kim YC, Kim WT, Kim DH. A develop of Ti-based bulk metallic glass. Mater Sci Eng A. 2004;375–377:127–35.

    Article  Google Scholar 

  2. Ashby MF, Greer AL. Metallic glasses as structural materials. Scr Mater. 2006;54:321–6.

    Article  CAS  Google Scholar 

  3. Zhang T, Inoue A. Thermal and mechanical properties of Ti–Ni–Cu–Sn amorphous alloys with a wide supercooled liquid region before crystallization. Mater Trans JIM. 1998;39:1001–6.

    Article  CAS  Google Scholar 

  4. Huang YJ, Shen J, Sun JF, Yu XB. A new Ti–Zr–Hf–Cu–Ni–Si–Sn bulk amorphous alloy with high glass-forming ability. J Alloy Compd. 2007;427:171–5.

    Article  CAS  Google Scholar 

  5. Wu XF, Suo ZY, Si Y, Meng LK, Qiu KQ. Bulk metallic glass formation in a ternary Ti–Cu–Ni alloy system. J Alloy Compd. 2008;452:268–72.

    Article  CAS  Google Scholar 

  6. Wang G, Fan HB, Huang YJ, Shen J, Chen ZH. A new TiZrHfSi bulk metallic glass with potential for biomedical applications. Mater Des. 2014;54:251–5.

    Article  CAS  Google Scholar 

  7. Guo F, Wang H, Poon SJ. Ductile titanium-based glassy alloy ingots. Appl Phys Lett. 2005;86:091907.

    Article  Google Scholar 

  8. Park JM, Chang HJ, Han KH, Kim WT, Kim DH. Enhancement of plasticity in Ti-rich Ti–Zr–Be–Cu–Ni bulk metallic glasses. Scr Mater. 2005;53:1–6.

    Article  CAS  Google Scholar 

  9. Duan G, Wiest A, Lind ML, Kahl A, Johnson WL. Lightweight Ti-based bulk metallic glasses excluding late transition metals. Scr Mater. 2008;58:465–8.

    Article  CAS  Google Scholar 

  10. Zhang Y, Zhang WG, Lin JP, Hao GJ, Chen GL, Liaw PK. Glass-forming ability and competitive crystalline phases for lightweight Ti–Be-based alloys. Metall Mater Trans A. 2010;41:1670–6.

    Article  Google Scholar 

  11. Gong P, Yao KF, Shao Y. Lightweight Ti–Zr–Be–Al bulk metallic glasses with improved glass-forming ability and compressive plasticity. J Non-Cryst Solids. 2012;358:2620–5.

    Article  CAS  Google Scholar 

  12. Gong P, Yao KF, Shao Y. Effects of Fe addition on glass-forming ability and mechanical properties of Ti–Zr–Be bulk metallic glass. J Alloys Compd. 2012;536:26–9.

    Article  CAS  Google Scholar 

  13. Gong P, Yao KF, Wang X, Shao Y. A new centimeter-sized Ti-based quaternary bulk metallic glass with good mechanical properties. Adv Eng Mater. 2013;15:691–6.

    Article  CAS  Google Scholar 

  14. Zhao SF, Shao Y, Gong P, Yao KF. A centimeter-sized quaternary Ti–Zr–Be–Ag bulk metallic glass. Adv Mater Sci Eng. 2014. doi:10.1155/2014/192187.

    Google Scholar 

  15. He Y, Schwarz RB, Archuleta JI. Bulk glass formation in the Pd–Ni–P system. Appl Phys Lett. 1996;69:1861.

    Article  CAS  Google Scholar 

  16. Nishiyama N, Takenaka K, Miura H, Saidoh N, Zeng Y, Inoue A. The world’s biggest glassy alloy ever made. Intermetallics. 2012;30:19–24.

    Article  CAS  Google Scholar 

  17. Peker A, Johnson WL. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl Phys Lett. 1993;63:2342–4.

    Article  Google Scholar 

  18. Yokoyama Y, Mund E, Inoue A, Schultz L. Production of Zr55Cu30Ni5Al10 glassy alloy rod of 30 mm in diameter by a cap-cast technique. Mater Trans. 2007;48:3190–2.

    Article  CAS  Google Scholar 

  19. Lou HB, Wang XD, Xu F, Ding SQ, Cao QP, Hono K, Jiang JZ. 73 mm-diameter bulk metallic glass rod by copper mould casting. Appl Phys Lett. 2011;99:05191.

    Google Scholar 

  20. Zheng Q, Xu J, Ma E. High glass-forming ability correlated with fragility of Mg–Cu(Ag)–Gd alloys. J Appl Phys. 2007;102:113519.

    Article  Google Scholar 

  21. Jiang QK, Zhang GQ, Yang L, Wang XD, Saksl K, Franz H, Wunderlich R, Fecht H, Jiang JZ. La-based bulk metallic glasses with critical diameter up to 30 mm. Acta Mater. 2007;55:4409–18.

    Article  CAS  Google Scholar 

  22. Pratap A, Rao T, Lad KN, Dhurandhar HD. Kinetics of crystallization of titanium based binary and ternary amorphous alloys. J Non-Cryst Solids. 2007;353:2346–9.

    Article  CAS  Google Scholar 

  23. Khalifa H, Vecchio K. Thermal stability and crystallization phenomena of low cost Ti-based bulk metallic glass. J Non-Cryst Solids. 2011;357:3393–8.

    Article  CAS  Google Scholar 

  24. Inoue A, Nishiyama N, Masumoto T. Preparation of bulk glassy Pd40Ni10Cu30P20 alloy of 40 mm in diameter by water quenching. Mater Trans JIM. 1996;37:181.

    Article  CAS  Google Scholar 

  25. Ding HY, Li Y, Yao KF. Preparation of a Pd–Cu–Si bulk metallic glass with a diameter up to 11 mm. Chin Phys Lett. 2010;27:126101.

    Article  Google Scholar 

  26. Gong P, Wang X, Shao Y, Chen N, Liu X, Yao KF. A Ti–Zr–Be–Fe–Cu bulk metallic glass with superior glass-forming ability and high specific strength. Intermetallics. 2013;43:177–81.

    Article  CAS  Google Scholar 

  27. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  28. Johnson WA, Mehl RF. Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min Metall Pet Eng. 1939;135:416–22.

    Google Scholar 

  29. Avrami M. Kinetics of phase change. General theory. J Chem Phys. 1939;7:1103–12.

    Article  CAS  Google Scholar 

  30. Qin FX, Zhang HF, Ding BZ, Hu ZQ. Nanocrystallization kinetics of Ni-based bulk amorphous alloy. Intermetallics. 2004;12:1197–203.

    Article  CAS  Google Scholar 

  31. Ranganathan S, Heimendahl MV. The three activation energies with isothermal transformations: applications to metallic glasses. J Mater Sci. 1981;16:2401–4.

    Article  CAS  Google Scholar 

  32. Sun YD, Li ZQ, Liu JS, Yang JN, Cong MQ. Crystallization kinetics of Mg61Cu28Gd11 and (Mg61Cu28Gd11)99.5Sb0.5 bulk metallic glasses. J Alloys Compd. 2010;506:302–7.

    Article  CAS  Google Scholar 

  33. Cheng S, Wang C, Ma M, Shan D, Guo B. Non-isothermal crystallization kinetics of Zr41.2Ti13.8Cu12.5Ni10Be22.5 amorphous alloy. Thermochim Acta. 2014;587:11–7.

    Article  CAS  Google Scholar 

  34. Calka A, Radlinski AP. Decoupled bulk and surface crystallization of Pd85Si15 glassy metallic alloys: description of isothermal crystallization by a local value of the Avrami exponent. J Mater Res. 1985;3:59.

    Article  Google Scholar 

  35. Christian JW. The theory of transformation in metals and alloys. 1st ed. Oxford: Pergamon; 1965.

    Google Scholar 

  36. Chen LC, Spaepen F. Calorimetric evidence for the micro-quasicrystalline structure of ‘amorphous’ Al/transition metal alloys. Nature. 1988;336:366.

    Article  CAS  Google Scholar 

  37. Wang HR, Gao YL, Min GH, Hui XD, Ye YF. Primary crystallization in rapidly solidified Zr70Cu20Ni10 alloy from a supercooled liquid region. Phys Lett A. 2003;314:81–7.

    Article  CAS  Google Scholar 

  38. Simon P, Illekova E, Mojumdar SC. Kinetics of crystallization of metallic glasses studied by non-isothermal and isothermal DSC. J Therm Anal Calorim. 2012;110:567–71.

    Article  Google Scholar 

  39. Sunol JJ, Bonastre J. Crystallization kinetics of metallic glasses. J Therm Anal Calorim. 2010;102:447–50.

    Article  CAS  Google Scholar 

  40. Vyazovkin S. A unified approach to kinetic processing of nonisothermal data. Int J Chen Kinet. 1996;28:95–101.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 51271095 and 50971073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kefu Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, P., Yao, K. & Zhao, S. Cu-alloying effect on crystallization kinetics of Ti41Zr25Be28Fe6 bulk metallic glass. J Therm Anal Calorim 121, 697–704 (2015). https://doi.org/10.1007/s10973-015-4549-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4549-5

Keywords

Navigation