Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 120, Issue 3, pp 1893–1903 | Cite as

Study on curing kinetics of diglycidyl 1,2-cyclohexane dicarboxylate epoxy/episulfide resin system with hexahydro-4-methylphthalic anhydride as a curing agent

  • Chongfeng Zhang
  • Xiaodong Liu
  • Jue Cheng
  • Junying Zhang
Article

Abstract

The curing kinetics of the hexahydro-4-methylphthalic anhydride (MHHPA)/diglycidyl 1,2-cyclohexane dicarboxylate (CY184) epoxy resin system and MHHPA/CY184 epoxy/episulfide resin system (containing 2 mass% DMP-30 as an accelerator) was comparatively investigated by non-isothermal differential scanning calorimetry with a model-fitting Málek method and a model-free advanced isoconversional method of Vyazovkin, and the curing behavior was discussed based on the proposed curing mechanism. The results indicated that both of the MHHPA/CY184 epoxy resin system and MHHPA/CY184 epoxy/episulfide resin system fitted Šesták–Berggren model. The activation energy of MHHPA/CY184 epoxy/episulfide resin system was lower than that of MHHPA/CY184 epoxy resin system, suggesting that the episulfide resin has higher reactivity and can accelerate the reaction. The value of m in the kinetic model equation in MHHPA/CY184 epoxy/episulfide resin system is much smaller than that in MHHPA/CY184 epoxy resin system, indicating, unlike the MHHPA/CY184 epoxy resin system, MHHPA/CY184 epoxy/episulfide resin system has much less autocatalytic effect.

Keywords

Epoxy/episulfide resins Non-isothermal DSC Vyazovkin method Málek method FWO method 

Notes

Acknowledgements

The authors greatly appreciated the financial supports from National Natural Science Foundation of China (Project Nos. 21176017 and 21476013).

References

  1. 1.
    Bell J, Ku W. Epoxy/episulfide resins. Berlin: Walter de Gruyter; 1987.Google Scholar
  2. 2.
    Li Y, Cheng J, Zhang J. Study on the synthesis of thiirane. J Appl Polym Sci. 2006;101(6):4023–7.CrossRefGoogle Scholar
  3. 3.
    Chino K, Suga K, Ikawa M, Satoh H. Novel rapid-cure adhesives for low temperature using thiirane compound. J Appl Polym Sci. 2001;82(12):2953–7.CrossRefGoogle Scholar
  4. 4.
    Ku W, Bell JP. Fast curing epoxy–episulfide resin for uses at room temperature. Epoxy resin chemistry II(A 84-29376 12-27). Washington, DC: American Chemical Society; 1983. p. 153–69.Google Scholar
  5. 5.
    Bell J, Don TM, Voong S, Fernandez A, Ku W. Synthesis and properties of epoxy–episulfide resins. Die Angewandte Makromolekulare Chemie. 1996;240(1):67–81.CrossRefGoogle Scholar
  6. 6.
    Tsuchida K, Bell JP. A new epoxy/episulfide resin system for coating applications: curing mechanism and properties. Int J Adhes Adhes. 2000;20(6):449–56.CrossRefGoogle Scholar
  7. 7.
    Tsuchida K, Bell JP. A new epoxy/episulfide resin system for electronic applications—2: pot life and prepreg storage life evaluation. J Adhes Sci Technol. 2000;14(12):1515–26.CrossRefGoogle Scholar
  8. 8.
    Yang T, Zhang C, Zhang J, Cheng J. The influence of tertiary amine accelerators on the curing behaviors of epoxy/anhydride systems. Thermochim Acta. 2014;577:11–6.CrossRefGoogle Scholar
  9. 9.
    Yao L, Deng J, Qu B, Shi W. Cure kinetics of DGEBA with hyperbranched poly (3-hydroxyphenyl) phosphate as curing agent studied by non-isothermal DSC. Chem Res Chin Univ. 2006;22(1):118–22.CrossRefGoogle Scholar
  10. 10.
    Chu F, McKenna T, Lu S. Curing kinetics of an acrylic resin/epoxy resin system using dynamic scanning calorimetry. Eur Polym J. 1997;33(6):837–40.CrossRefGoogle Scholar
  11. 11.
    Šesták J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3(1):1–12.CrossRefGoogle Scholar
  12. 12.
    Ghaemy M, Rostami A, Omrani A. Isothermal cure kinetics and thermodynamics of an epoxy–nickel–diamine system. Polym Int. 2006;55(3):279–84.CrossRefGoogle Scholar
  13. 13.
    Zhou T, Gu M, Jin Y, Wang J. Studying on the curing kinetics of a DGEBA/EMI-2, 4/nano-sized carborundum system with two curing kinetic methods. Polymer. 2005;46(16):6174–81.CrossRefGoogle Scholar
  14. 14.
    Zhao L, Hu X. A variable reaction order model for prediction of curing kinetics of thermosetting polymers. Polymer. 2007;48(20):6125–33.CrossRefGoogle Scholar
  15. 15.
    Yoo MJ, Kim SH, Park SD, Lee WS, Sun J, Choi J, Nahm S. Investigation of curing kinetics of various cycloaliphatic epoxy resins using dynamic thermal analysis. Eur Polym J. 2010;46(5):1158–62.CrossRefGoogle Scholar
  16. 16.
    Rocks J, Rintoul L, Vohwinkel F, George G. The kinetics and mechanism of cure of an amino-glycidyl epoxy resin by a co-anhydride as studied by FT-Raman spectroscopy. Polymer. 2004;45(20):6799–811.CrossRefGoogle Scholar
  17. 17.
    Luo Y-R. Handbook of bond dissociation energies in organic compounds. Boca Raton: CRC Press; 2002.CrossRefGoogle Scholar
  18. 18.
    Hseih HK, Su CC, Woo EM. Cure kinetics and inter-domain etherification in an amine-cured phenoxy/epoxy system. Polymer. 1998;39(11):2175–83.CrossRefGoogle Scholar
  19. 19.
    Málek J. A computer program for kinetic analysis of non-isothermal thermoanalytical data. Thermochim Acta. 1989;138(2):337–46.CrossRefGoogle Scholar
  20. 20.
    Málek J. The kinetic analysis of non-isothermal data. Thermochim Acta. 1992;200:257–69.CrossRefGoogle Scholar
  21. 21.
    Roşu D, Caşcaval C, Mustată F, Ciobanu C. Cure kinetics of epoxy resins studied by non-isothermal DSC data. Thermochim Acta. 2002;383(1):119–27.Google Scholar
  22. 22.
    Roşu D, Mustată F, Caşcaval C. Investigation of the curing reactions of some multifunctional epoxy resins using differential scanning calorimetry. Thermochim Acta. 2001;370(1):105–10.Google Scholar
  23. 23.
    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6.CrossRefGoogle Scholar
  24. 24.
    Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Nat Bur Stand. 1966;70(6):487–523.CrossRefGoogle Scholar
  25. 25.
    Liu J, Li J, Fan M, Zhang J, Cheng J. Comparative curing kinetics of 1, 4-bis (4-diaminobenzene-1-oxygen) n-butane and 4, 4′-bis-(diaminodiphenyl) methane with tetraglycidyl methylene dianiline systems. J Therm Anal Calorim. 2014;117(2):603–610.Google Scholar
  26. 26.
    Senum G, Yang R. Rational approximations of the integral of the Arrhenius function. J Therm Anal. 1977;11(3):445–7.CrossRefGoogle Scholar
  27. 27.
    Koga N. Kinetic analysis of thermoanalytical data by extrapolating to infinite temperature. Thermochim Acta. 1995;258:145–59.CrossRefGoogle Scholar
  28. 28.
    Sbirrazzuoli N, Vyazovkin S. Learning about epoxy cure mechanisms from isoconversional analysis of DSC data. Thermochim Acta. 2002;388(1):289–98.CrossRefGoogle Scholar
  29. 29.
    Sbirrazzuoli N, Vyazovkin S, Mititelu A, Sladic C, Vincent L. A study of epoxy–amine cure kinetics by combining isoconversional analysis with temperature modulated DSC and dynamic rheometry. Macromol Chem Phys. 2003;204(15):1815–21.CrossRefGoogle Scholar
  30. 30.
    Vyazovkin S, Sbirrazzuoli N. Mechanism and kinetics of epoxy–amine cure studied by differential scanning calorimetry. Macromolecules. 1996;29(6):1867–73.CrossRefGoogle Scholar
  31. 31.
    Vyazovkin S. Advanced isoconversional method. J Therm Anal Calorim. 1997;49(3):1493–9.CrossRefGoogle Scholar
  32. 32.
    Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22(2):178–83.CrossRefGoogle Scholar
  33. 33.
    Vyazovkin S. Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature. J Comput Chem. 1997;18(3):393–402.CrossRefGoogle Scholar
  34. 34.
    Vyazovkin S, Sbirrazzuoli N. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun. 2006;27(18):1515–32.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Chongfeng Zhang
    • 1
  • Xiaodong Liu
    • 1
  • Jue Cheng
    • 1
  • Junying Zhang
    • 1
  1. 1.Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of EducationBeijing University of Chemical TechnologyBeijingPeople’s Republic of China

Personalised recommendations