Journal of Thermal Analysis and Calorimetry

, Volume 120, Issue 3, pp 1921–1928 | Cite as

Thermal decomposition kinetics and anti-oxidation performance of commercial antioxidants



The thermal stability of 2, 6-Di-tert-butyl-4-methylphenol (T501) and N-Phenyl-1-naphthylamine (T531) was comparatively investigated using thermogravimetry(TG)/derivative thermogravimetry under air atmosphere. Activation energies of the corresponding thermal decomposition process were evaluated by Flynn–Wall–Ozawa and Kissinger methods. Pressurized differential scanning calorimetry and TG methods were also employed to study their antioxidant performance in different kinds of lubricating oils. The thermal analysis and kinetic study showed that the thermal stability of T531 was superior to that of T501. The oxidation tests indicated that T531 exhibited better anti-oxidation property than T501 in the tested oils. All the results demonstrated that T531 was a more efficient antioxidant with outstanding thermal stability and oxidation resistance.


Antioxidant Thermal decomposition Kinetics Flynn–Wall–Ozawa(FWO) Kissinger Anti-oxidation performance 



This work was supported by the Major State Basic Research Development Program of China (973 Program) (Grant No. 2013CB632301).


  1. 1.
    Hu JQ, Wei XY, Dai DL, Liu CC, Fu Y, Zong ZM, Yao JB. Study demonstrating enhanced oxidation stability when arylamine antioxidants are combined with organic molybdenum complexes. Tribol Trans. 2007;50:205–10.CrossRefGoogle Scholar
  2. 2.
    Rudnick LR. Lubricant additives: chemistry and applications (second edition). Wilmington: Taylor and Francis Group: Designed Materials Group; 2009.Google Scholar
  3. 3.
    Satlsh KN, Klaus EE, Duda JL. Evaluation of liquid phase oxidation products of ester and mineral oil lubricants. Ind Eng Chem Prod Res Dev. 1984;23:613–9.CrossRefGoogle Scholar
  4. 4.
    Colclough T. Role of additives and transition metals in lubricating oil oxidation. Ind Eng Chem Res. 1987;26:1888–95.CrossRefGoogle Scholar
  5. 5.
    Fuchs GHV, Diamond H. Oxidation characteristics of lubricating oils. Ind Eng Chem Res. 1942;34:927–37.CrossRefGoogle Scholar
  6. 6.
    Greve RJ, Langford SC, Dickinson JT. Oxidation and reduction reactions responsible for galvanic corrosion of ferrous and reactive metals in the presence of a perfluoropolyether lubricant: fomblin Z-DOL. Wear. 2001;249:727–32.CrossRefGoogle Scholar
  7. 7.
    Tseregounis SI, Spearot JA, Kite DJ. Formation of deposits from thin films of mineral oil base stocks on cast iron. Ind Eng Chem Res. 1987;26:886–94.CrossRefGoogle Scholar
  8. 8.
    Ashraful AM, Masjuki HH, Kalam MA, Ashrafur Rahman SM, Habibullah M, Syazwan M. Study of the effect of storage time on the oxidation and thermal stability of various biodiesels and their blends. Energy Fuel. 2014;28:1081–9.CrossRefGoogle Scholar
  9. 9.
    Kouame SD, Liu E. Characterization of fully and partially additized lubricant deposits by temperature programmed oxidation. Tribol Int. 2014;72:58–64.CrossRefGoogle Scholar
  10. 10.
    Mousavi P, Wang DX, Grant CS, Oxenham W, Hauser PJ. Effects of antioxidants on the thermal degradation of a polyol ester lubricant using GPC. Ind Eng Chem Res. 2006;45:15–22.CrossRefGoogle Scholar
  11. 11.
    Quinchia LA, Delgado MA, Valencia C, Franco JM, Gallegos C. Natural and synthetic antioxidant additives for improving the performance of new biolubricant formulations. J Agric Food Chem. 2011;59:12917–24.CrossRefGoogle Scholar
  12. 12.
    Ramani R, Alam S. Influence of an organophosphonite antioxidant on the thermal behavior of PEEK/PEI blend. Thermochim Acta. 2012;550:33–41.CrossRefGoogle Scholar
  13. 13.
    Bantchev GB. G. Biresaw, A. Mohamed, J. Moser, Temperature dependence of the oxidative stability of corn oil and polyalphaolefin in the presence of sulfides. Thermochim Acta. 2011;513:94–9.CrossRefGoogle Scholar
  14. 14.
    Fox NJ, Stachowiak GW. Vegetable oil-based lubricants—A review of oxidation. Tribol Int. 2007;40:1035–46.CrossRefGoogle Scholar
  15. 15.
    Wiklund P. The response to antioxidants in base oils of different degrees of refining. Lubr Sci. 2007;19:169–82.CrossRefGoogle Scholar
  16. 16.
    Gatto VJ, Moehle WE, Cobb TW, Schneller ER. The relationship between oxidation stability and antioxidant depletion in turbine oils formulated with Groups II, III and IV base stocks. J Synth Lubr. 2007;24:111–24.CrossRefGoogle Scholar
  17. 17.
    Stricklin PL, Patterson GH, Riga AT. The development of a standard method for determining oxidation induction times of hydrocarbon liquids by PDSC. Thermochim Acta. 1994;243:201–8.CrossRefGoogle Scholar
  18. 18.
    Chao MR, Li WM, Wang XB. Antioxidant synergism between synthesised alkylated diphenylamine and dilauryl thiodipropionate in polyolefin base fluid. J Therm Anal Calorim. 2014;117:925–33.CrossRefGoogle Scholar
  19. 19.
    Oliva A, Ashen DS, Salmona M, Farina JB, Llabrés M. Solid-state stability studies of cholecystokinin (CCK-4) peptide under nonisothermal conditions using thermal analysis, chromatography and mass spectrometry. Eur J Pharm Sci. 2010;39:263–71.CrossRefGoogle Scholar
  20. 20.
    Mei XL, Jiao SL, Li XY, Li YC, Cheng L. Effect of the antioxidants on the stability of poly(vinylbutyral) and kinetic analysis. J Therm Anal Calorim. 2014;116:1345–9.CrossRefGoogle Scholar
  21. 21.
    Raghunanan L, Narine SS. Influence of structure on chemical and thermal stability of aliphatic diesters. J Phys Chem B. 2013;117:14754–62.CrossRefGoogle Scholar
  22. 22.
    Wan JT, Bu ZY, Xu CJ, Fan H, Li BG. Model-fitting and model-free nonisothermal curing kinetics of epoxy resin with a low-volatile five-armed starlike aliphatic polyamine. Thermochim Acta. 2011;525:31–9.CrossRefGoogle Scholar
  23. 23.
    Fatmi M, Ghebouli B, Ghebouli MA, Chihi T, Hafiz MA. The kinetics of precipitation in Al-2.4 wt.% Cu alloy by Kissinger, Ozawa, Bosswel and Matusita methods. Phys B. 2011;406:2277–80.CrossRefGoogle Scholar
  24. 24.
    Ma LP, Du YL, Niu XK, Zheng SC, Zhang W. Thermal and kinetic analysis of the process of thermochemical decomposition of phosphogypsum with co and additives. Ind Eng Chem Res. 2012;51:6680–5.CrossRefGoogle Scholar
  25. 25.
    Zhang Y, Wu H, Xu KZ, Qiu QQ, An T, Song JR, Zhao FQ. Nonisothermal decomposition kinetics, specific heat capacity, and adiabatic time-to-explosion of Zn(NH3)2(FOX-7)2. J Therm Anal Calorim. 2014;116:817–23.CrossRefGoogle Scholar
  26. 26.
    Slopiecka K, Bartocci P, Fantozzi F. Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Appl Energy. 2012;97:491–7.CrossRefGoogle Scholar
  27. 27.
    Gyurov S, Rabadjieva D, Kovacheva D, Kostova Y. Kinetics of copper slag oxidation under nonisothermal conditions. J Therm Anal Calorim. 2014;116:945–53.CrossRefGoogle Scholar
  28. 28.
    Chutia RS, Kataki R, Bhaskar T. Thermogravimetric and decomposition kinetic studies of Mesua ferrea L. deoiled cake. Bioresour Technol. 2013;139:66–72.CrossRefGoogle Scholar
  29. 29.
    Dogan F, Kaya I, Bilici A. Azomethine-based phenol polymer: synthesis, characterization and thermal study. Synth Met. 2011;161:79–86.CrossRefGoogle Scholar
  30. 30.
    Dueramae T, Jubsilp C, Takeichi T, Rimdusit S. Thermal degradation mechanism of highly filled nano-SiO2 and polybenzoxazine. J Therm Anal Calorim. 2014;116:435–46.CrossRefGoogle Scholar
  31. 31.
    Mathan ND, Arunjunairaj M, Rajkumar T, Ponraju D, Vijayakumar CT. Thermal degradation of pentaerythritol phosphate alcohol. J Therm Anal Calorim. 2012;110:1133–41.CrossRefGoogle Scholar
  32. 32.
    Li KY, Huang XY, Fleischmann C, Rein G, Ji J. Pyrolysis of medium-density fiberboard: optimized search for kinetics scheme and parameters via a genetic algorithm driven by Kissinger’s method. Energy Fuel. 2014;28:6130–9.CrossRefGoogle Scholar
  33. 33.
    Wang K, Yu QB, Qin Q. Reduction kinetics of cu-based oxygen carriers for chemical looping air separation. Energy Fuel. 2013;27:5466–74.Google Scholar
  34. 34.
    Liang YG, Cheng BJ, Si YB, Cao DJ, Jiang HY, Han GM, Liu XH. Thermal decomposition kinetics and characteristics of Spartina alternifloravia thermogravimetric analysis. Renew Energy. 2014;68:111–7.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  1. 1.State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouPeople’s Republic of China
  2. 2.University of Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations