Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 120, Issue 3, pp 1645–1655 | Cite as

Molar heat capacities and solution thermochemistry of n-undecylammonium bromide monohydrate C11H28BrNO(s)

  • Z. Wang
  • B. Li
  • Y. H. Zhang
  • M. Wang
  • Y. X. Kong
  • Y. Y. Di
  • J. M. Dou
Article

Abstract

Crystal structure of n-undecylammonium bromide monohydrate was determined by X-ray crystallography. Molar enthalpies of dissolution of the compound at different concentrations (m/mol kg−1) were measured by an isoperibol solution reaction calorimeter at T = 298.15 K. According to the Pitzer electrolyte solution theory, molar enthalpy of dissolution of the compound at infinite dilution was determined as \( \Delta _{\text{s}} H_{\text{m}}^{\infty } ({\text{C}}_{11} {\text{H}}_{28} {\text{BrNO}}) \) = 32.40 kJ mol−1 and Pitzer’s parameters (\( \beta_{\text {MX}}^{(0)\text {L}} \) and \( \beta_{\text {MX}}^{(1)\text {L}} \)) were obtained. The values of apparent relative molar enthalpies (\( {}^{\varPhi}L \)) of the title compound and relative partial molar enthalpies (\( \overline{{L_{2} }} \) and \( \overline{{L_{1} }} \)) of the solute and the solvent at different concentrations were derived from experimental values of enthalpies of dissolution of the compound. Low-temperature heat capacities of the compound were measured by a precision automated adiabatic calorimeter over the temperature range from 78 to 390 K. Two solid–solid phase transitions were observed for the title compound. The temperatures, molar enthalpies and entropies of the phase transitions were determined as T trs,1 = (314.42 ± 0.229) K, T trs,2 = (338.66 ± 0.228) K, Δtrs H m,1 = (15.542 ± 0.059) kJ mol−1, Δtrs H m,2 = (6.431 ± 0.209) kJ mol−1, Δtrs S m,1 = (49.803 ± 0.079) J K−1 mol−1 and Δtrs S m,2 = (17.658 ± 0.072) J K−1 mol−1, respectively, based on the analysis of heat capacity curve. Two polynomial equations of heat capacities as a function of temperature were fitted by least squares method. Based on the two polynomial equations, smoothed heat capacities and thermodynamic functions of the compound relative to the standard reference temperature 298.15 K were calculated and tabulated at 5-K intervals.

Keywords

n-Undecylammonium bromide monohydrate Crystal structure Pitzer’s theory Enthalpy of dissolution Low-temperature heat capacity Solid–solid phase transition 

Notes

Acknowledgements

This work is financially supported by the National Natural Science Foundations of China under the contract NSFC Nos. 20673050, 20973089 and 21273100.

References

  1. 1.
    Alkan C, Sari A, Karaipekli A. Preparation, thermal properties and thermal reliability of microencapsulated n-eisocan as novel phase change material for thermal energy storage. Energy Convers Manage. 2011;52:687–92.CrossRefGoogle Scholar
  2. 2.
    Fang GY, Li H, Yang F, Liu X, Wu SM. Preparation and characterization of Nano-encapsulated n-tetradecane as phase change material for thermal energy storage. Chem Eng J. 2009;153:217–21.CrossRefGoogle Scholar
  3. 3.
    Li H, Liu X, Fang GY. Preparation and characteristics of n-nonadecane/cement composites as thermal energy storage materials in buildings. Energy Build. 2010;42:1661–5.CrossRefGoogle Scholar
  4. 4.
    Rademeyer M, Kruger GJ, Billing DG. crystal structures and phase transitions of long-chain n-alkylammonium bromide monohydrates. CrystEngComm. 2009;11:1926–33.CrossRefGoogle Scholar
  5. 5.
    Kruger GJ, Rademeyera M, Billingb DG. n-Undecylammonium bromide monohydrate. Acta Cryst. 2003;E59:o480–2.Google Scholar
  6. 6.
    Holba P, Sedmidubsky D. Heat capacity equations for nonstoichiometric solids. J Therm Anal Calorim. 2013;113:239–45.CrossRefGoogle Scholar
  7. 7.
    Šesták J. Thermal science and analysis: terms connotation, history, development, and the role of personalities. J Therm Anal Calorim. 2013;113:1049–54.CrossRefGoogle Scholar
  8. 8.
    Paukov IE, Kovalevskaya YA, Boldyreva EV. Low-temperature heat capacity and thermodynamic parameters of c-aminobutyric acid. J Therm Anal Calorim. 2013;111:2059–62.CrossRefGoogle Scholar
  9. 9.
    Lv XC, Tan ZC, Gao XH, Sun LX. Molar heat capacity and thermodynamic properties of crystalline Eu(C2H5O2N)2Cl3·3H2O. J Therm Anal Calorim. 2013;113:971–6.CrossRefGoogle Scholar
  10. 10.
    Gao ZF, Di YY, Tan ZC, Dou JM. Synthesis, structure characterization, and thermochemistry of the coordination compounds of pyridine-2,6-dicarboxylic acid with several metals (Ca and Co). J Therm Anal Calorim. 2014;115:1205–10.CrossRefGoogle Scholar
  11. 11.
    Liu YP, Di YY, He DH, Kong YX, Yang WW, Dan WY. Lattice potential energy and thermochemical properties of ethylenediamine dihydrochloride(C2H10N2Cl2). J Chem Thermodyn. 2010;42:513–7.CrossRefGoogle Scholar
  12. 12.
    Rychly R, Pekarek V. The Use of Potassium Chloride and Tris–(hydroxymethyl) Aminomethane as Standard Substances for Solution Calorimetry. J Chem Thermodyn. 1977;9:391–6.CrossRefGoogle Scholar
  13. 13.
    Zhong WW, Di YY, Dou JM. Synthesis, structural characterization, and thermochemistry of complexes of pyridine 2,6-dicarboxylate with metals (Mg and Sr). J Therm Anal Calorim. 2014;115:2527–33.CrossRefGoogle Scholar
  14. 14.
    Meng QY, Xu D, Di YY, Gao ZF, Dou JM. Low-temperature heat capacities and thermodynamic properties of ethyl 4-dimethylaminobenzoate (C11H15NO2). J Therm Anal Calorim. 2014;. doi: 10.1007/s10973-014-4293-2.Google Scholar
  15. 15.
    Ditamars DA, Ishihara S, Chang SS, Bernstein G, West ED. Enthalpy and heat-capacity standard reference material: synthetic sapphire (α-A12O3) from 10 to 2,250 K. J Res Natl Bur Stand. 1982;87:159–63.CrossRefGoogle Scholar
  16. 16.
    Slivester LF, Pitzer KS. Thermodynamics of electrolytes (VIII)-high-temperature properties, including enthalpy and heat capacity, with application to sodium chloride. J Phys Chem. 1977;81:1822–8.CrossRefGoogle Scholar
  17. 17.
    Pitzer KS. In: Pitzer KS, editor. Activity coefficients in electrolyte solutions, revised ed. Boca Raton: CRC; 1991 (Chapter 3).Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Z. Wang
    • 1
    • 2
  • B. Li
    • 2
  • Y. H. Zhang
    • 2
  • M. Wang
    • 1
    • 2
  • Y. X. Kong
    • 2
  • Y. Y. Di
    • 2
  • J. M. Dou
    • 2
  1. 1.Central LaboratoryLiaocheng People’s HospitalLiaochengPeople’s Republic of China
  2. 2.College of Chemistry and Chemical EngineeringLiaocheng UniversityLiaochengPeople’s Republic of China

Personalised recommendations