Journal of Thermal Analysis and Calorimetry

, Volume 120, Issue 1, pp 223–230 | Cite as

Do we know what the temperature is?

  • Jiří J. Mareš


Temperature, the central concept of thermal physics, is one of the most frequently employed physical quantities in common practice. Even though the operative methods of the temperature measurement are described in detail in various practical instructions and textbooks, the rigorous treatment of this concept is almost lacking in the current literature. As a result, the answer to a simple question of “what the temperature is” is by no means trivial and unambiguous. There is especially an appreciable gap between the temperature as introduced in the frame of statistical theory and the only experimentally observable quantity related to this concept, phenomenological temperature. Just the logical and epistemological analysis of the present concept of phenomenological temperature is the kernel of the contribution.


Thermodynamics Temperature scales Hotness Mach’s postulates Carnot’s principle Kelvin’s proposition 


  1. 1.
    Landau L, Lifshitz E. Statisticheskaya fizika. Leningrad: GITTL; 1951.Google Scholar
  2. 2.
    Blundell SJ, Blundell KM. Concepts in thermal physics. New York: Oxford University Press; 2008.Google Scholar
  3. 3.
    Boas M. Hero’s pneumatica: a study of its transmission and influence. Isis. 1949;40:38–48.CrossRefGoogle Scholar
  4. 4.
    Mareš JJ. On the development of the temperature concept. J Therm Anal Calor. 2000;60:1081–91.CrossRefGoogle Scholar
  5. 5.
    Fürth R. Algemeine Grundlagen der Physik, Prinzipien der Statistik. In: Thirring H, editor. Handbuch der Physik Bd. IV. Berlin: Springer; 1929.Google Scholar
  6. 6.
    Palacios J. Dimensional analysis. London: Macmillan & Co; 1964.Google Scholar
  7. 7.
    Black J. Lectures on the elements of chemistry. Edinburgh: W. Creech; 1803, German translation: Vorlesungen über die Grundlehren der Chemie. Hamburg: Crell; 1804.Google Scholar
  8. 8.
    Carathéodory C. Untersuchungen über die Grundlagen der Thermodynamik. Math Ann. 1909;67:355–86.CrossRefGoogle Scholar
  9. 9.
    Balamuth L, Wolfe HC, Zemansky MW. The temperature concept from the macroscopic point of view. Am J Phys. 1941;9:199–203.CrossRefGoogle Scholar
  10. 10.
    Barnett MK. The development of thermometry and the temperature concept. Osiris. 1956;12:269–341.CrossRefGoogle Scholar
  11. 11.
    Mareš JJ. Hotness manifold, phenomenological temperature. In: Šesták J, Mareš JJ, Hubík P, editors. Glassy, amorphous and nano-crystalline materials. Dordrecht: Springer; 2011. pp. 327–346.Google Scholar
  12. 12.
    Huntington EV. The continuum and other types of serial order. New York: Harvard University Press; 1917. Reprint. New York: Dover Phoenix Editions; 2003.Google Scholar
  13. 13.
    Mach E. Die Principien der Wärmelehre. Leipzig: Verlag von J. A. Barth; 1896.Google Scholar
  14. 14.
    Epstein PS. Textbook of thermodynamics. New York: Wiley; 1954.Google Scholar
  15. 15.
    Boyer CB. Early principles in the calibration of thermometers. Am J Phys. 1942;10:176–80.CrossRefGoogle Scholar
  16. 16.
    Hoppe E. Geschichte der Physik. Braunschweig: Vieweg und Sohn, a. G.; 1926. p. 170.Google Scholar
  17. 17.
    Serrin J, ed. The concepts of thermodynamics. In: Contemporary developments in continuum mechanics. Amsterdam: North-Holland Publ. Co.; 1978. pp. 411–451.Google Scholar
  18. 18.
    Stevens SS. On the theory of scales of measurement. Science. 1946;103:677–80.CrossRefGoogle Scholar
  19. 19.
    Nernst W. The new heat theorem. Reprint: New York: Dover Publications, Inc.; 1969.Google Scholar
  20. 20.
    Boas ML. A point of logic. Am J Phys. 1960;28:675.CrossRefGoogle Scholar
  21. 21.
    Carnot S. Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance. Paris: Bachelier; 1824. German transl.: Ostwald’s Klassiker. Nr. 37. Leipzig: Engelmann; 1909.Google Scholar
  22. 22.
    Callendar HL. The caloric theory of heat and Carnot’s principle. Proc Phys Soc Lond. 1911;23:153–89.CrossRefGoogle Scholar
  23. 23.
    Thomson W. (Lord Kelvin of Largs). On the absolute thermometric scale founded on Carnot’s theory of the motive power of heat. Phil Mag. 1848;33:313–7.Google Scholar
  24. 24.
    Mareš JJ, Hubík P, Šesták J, Špička V, Krištofik J, Stávek J. Phenomenological approach to the caloric theory of heat. Thermochim Acta. 2008;474:16–24.CrossRefGoogle Scholar
  25. 25.
    Fuchs HU. The dynamics of heat. New York: Springer; 2010.CrossRefGoogle Scholar
  26. 26.
    Joule JP. New determination of the mechanical equivalent of heat. Phil Trans R Soc Lond. 1878;169:365–83.CrossRefGoogle Scholar
  27. 27.
    Bailyn M. A survey of thermodynamics. New York: AIP Press; 1990.Google Scholar
  28. 28.
    Clausius R. Mechanische Warmetheorie. Braunschweig: Viewg Sohn; 1876.Google Scholar
  29. 29.
    Job G. Neudarstellung der Wärmelehre—Die Entropie als Wärme. Frankfurt am Main: Akad. Verlagsges; 1972.Google Scholar
  30. 30.
    Shamos MH. Great experiments in physics. New York: Dover Publications; 1953.Google Scholar
  31. 31.
    Job G, Lankau T. How harmful is the first law? Ann NY Acad Sci. 2003;988:171–81.CrossRefGoogle Scholar
  32. 32.
    Wensel HT. Temperature and temperature scales. J Appl Phys. 1940;11:373–87.CrossRefGoogle Scholar
  33. 33.
    Burckhardt F. Die Erfindung des Thermometers und seine Gestaltung im XVII. Basel: Jahrhundert; 1867.Google Scholar
  34. 34.
    von Oettingen AJ. Abhandlungen über Thermometrie von Fahrenheit, Réaumur, Celsius. Ostwald’s Klassiker No. 57. Leipzig: W. Engelmann; 1894.Google Scholar
  35. 35.
    ITS-90. Supplementary information for the International Temperature Scale of 1990. BIPM, ISBN 92-822-2111-3.Google Scholar
  36. 36.
    Preston-Thomas H. The International Temperature Scale of 1990 (ITS 90). Metrologia. 1990;27:Z186–93.CrossRefGoogle Scholar
  37. 37.
    Moser H. Der Triplepunkt des Wassers als Fixpunkt der Temperaturskala. Ann. d. Phys. 1929;393:341–60.CrossRefGoogle Scholar
  38. 38.
    Stimson HF. The measurement of some thermal properties of water. J. Washington Acad. Sci. 1945;35:201–18.Google Scholar
  39. 39.
    Šesták J. Is the original Kissinger equation obsolete today - not obsolete the entire non-isothermal kinetics? J Therm Anal Calorim. 2014;117:3–7.CrossRefGoogle Scholar
  40. 40.
    Šesták J. Kinetic phase diagrams as a consequence of sudden changing temperature or particle size. J Therm Anal Calorim. 2015;. doi: 10.1007/s10973-014-4352-8.Google Scholar
  41. 41.
    Mareš JJ, Hubík P, Šesták J, Špička V, Krištofik J, Stávek J. Relativistic transformation of temperature and Mosengeil-Ott’s antinomy. Phys E. 2010;42:484–7.CrossRefGoogle Scholar
  42. 42.
    Mareš JJ, Hubík P, Krištofik J, Nesládek M. Selected topics related to the transport and superconductivity in boron-doped diamond. Sci Technol Adv Mater. 2008;9:044101–7.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  1. 1.Institute of PhysicsASCRPrague 6Czech Republic

Personalised recommendations