Skip to main content
Log in

Do we know what the temperature is?

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Temperature, the central concept of thermal physics, is one of the most frequently employed physical quantities in common practice. Even though the operative methods of the temperature measurement are described in detail in various practical instructions and textbooks, the rigorous treatment of this concept is almost lacking in the current literature. As a result, the answer to a simple question of “what the temperature is” is by no means trivial and unambiguous. There is especially an appreciable gap between the temperature as introduced in the frame of statistical theory and the only experimentally observable quantity related to this concept, phenomenological temperature. Just the logical and epistemological analysis of the present concept of phenomenological temperature is the kernel of the contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Landau L, Lifshitz E. Statisticheskaya fizika. Leningrad: GITTL; 1951.

    Google Scholar 

  2. Blundell SJ, Blundell KM. Concepts in thermal physics. New York: Oxford University Press; 2008.

    Google Scholar 

  3. Boas M. Hero’s pneumatica: a study of its transmission and influence. Isis. 1949;40:38–48.

    Article  Google Scholar 

  4. Mareš JJ. On the development of the temperature concept. J Therm Anal Calor. 2000;60:1081–91.

    Article  Google Scholar 

  5. Fürth R. Algemeine Grundlagen der Physik, Prinzipien der Statistik. In: Thirring H, editor. Handbuch der Physik Bd. IV. Berlin: Springer; 1929.

  6. Palacios J. Dimensional analysis. London: Macmillan & Co; 1964.

    Google Scholar 

  7. Black J. Lectures on the elements of chemistry. Edinburgh: W. Creech; 1803, German translation: Vorlesungen über die Grundlehren der Chemie. Hamburg: Crell; 1804.

  8. Carathéodory C. Untersuchungen über die Grundlagen der Thermodynamik. Math Ann. 1909;67:355–86.

    Article  Google Scholar 

  9. Balamuth L, Wolfe HC, Zemansky MW. The temperature concept from the macroscopic point of view. Am J Phys. 1941;9:199–203.

    Article  CAS  Google Scholar 

  10. Barnett MK. The development of thermometry and the temperature concept. Osiris. 1956;12:269–341.

    Article  CAS  Google Scholar 

  11. Mareš JJ. Hotness manifold, phenomenological temperature. In: Šesták J, Mareš JJ, Hubík P, editors. Glassy, amorphous and nano-crystalline materials. Dordrecht: Springer; 2011. pp. 327–346.

  12. Huntington EV. The continuum and other types of serial order. New York: Harvard University Press; 1917. Reprint. New York: Dover Phoenix Editions; 2003.

  13. Mach E. Die Principien der Wärmelehre. Leipzig: Verlag von J. A. Barth; 1896.

    Google Scholar 

  14. Epstein PS. Textbook of thermodynamics. New York: Wiley; 1954.

    Google Scholar 

  15. Boyer CB. Early principles in the calibration of thermometers. Am J Phys. 1942;10:176–80.

    Article  Google Scholar 

  16. Hoppe E. Geschichte der Physik. Braunschweig: Vieweg und Sohn, a. G.; 1926. p. 170.

  17. Serrin J, ed. The concepts of thermodynamics. In: Contemporary developments in continuum mechanics. Amsterdam: North-Holland Publ. Co.; 1978. pp. 411–451.

  18. Stevens SS. On the theory of scales of measurement. Science. 1946;103:677–80.

    Article  Google Scholar 

  19. Nernst W. The new heat theorem. Reprint: New York: Dover Publications, Inc.; 1969.

  20. Boas ML. A point of logic. Am J Phys. 1960;28:675.

    Article  Google Scholar 

  21. Carnot S. Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance. Paris: Bachelier; 1824. German transl.: Ostwald’s Klassiker. Nr. 37. Leipzig: Engelmann; 1909.

  22. Callendar HL. The caloric theory of heat and Carnot’s principle. Proc Phys Soc Lond. 1911;23:153–89.

    Article  Google Scholar 

  23. Thomson W. (Lord Kelvin of Largs). On the absolute thermometric scale founded on Carnot’s theory of the motive power of heat. Phil Mag. 1848;33:313–7.

    Google Scholar 

  24. Mareš JJ, Hubík P, Šesták J, Špička V, Krištofik J, Stávek J. Phenomenological approach to the caloric theory of heat. Thermochim Acta. 2008;474:16–24.

    Article  Google Scholar 

  25. Fuchs HU. The dynamics of heat. New York: Springer; 2010.

    Book  Google Scholar 

  26. Joule JP. New determination of the mechanical equivalent of heat. Phil Trans R Soc Lond. 1878;169:365–83.

    Article  Google Scholar 

  27. Bailyn M. A survey of thermodynamics. New York: AIP Press; 1990.

    Google Scholar 

  28. Clausius R. Mechanische Warmetheorie. Braunschweig: Viewg Sohn; 1876.

    Google Scholar 

  29. Job G. Neudarstellung der Wärmelehre—Die Entropie als Wärme. Frankfurt am Main: Akad. Verlagsges; 1972.

    Google Scholar 

  30. Shamos MH. Great experiments in physics. New York: Dover Publications; 1953.

    Google Scholar 

  31. Job G, Lankau T. How harmful is the first law? Ann NY Acad Sci. 2003;988:171–81.

    Article  CAS  Google Scholar 

  32. Wensel HT. Temperature and temperature scales. J Appl Phys. 1940;11:373–87.

    Article  CAS  Google Scholar 

  33. Burckhardt F. Die Erfindung des Thermometers und seine Gestaltung im XVII. Basel: Jahrhundert; 1867.

    Google Scholar 

  34. von Oettingen AJ. Abhandlungen über Thermometrie von Fahrenheit, Réaumur, Celsius. Ostwald’s Klassiker No. 57. Leipzig: W. Engelmann; 1894.

  35. ITS-90. Supplementary information for the International Temperature Scale of 1990. BIPM, ISBN 92-822-2111-3.

  36. Preston-Thomas H. The International Temperature Scale of 1990 (ITS 90). Metrologia. 1990;27:Z186–93.

    Article  Google Scholar 

  37. Moser H. Der Triplepunkt des Wassers als Fixpunkt der Temperaturskala. Ann. d. Phys. 1929;393:341–60.

    Article  Google Scholar 

  38. Stimson HF. The measurement of some thermal properties of water. J. Washington Acad. Sci. 1945;35:201–18.

    CAS  Google Scholar 

  39. Šesták J. Is the original Kissinger equation obsolete today - not obsolete the entire non-isothermal kinetics? J Therm Anal Calorim. 2014;117:3–7.

    Article  Google Scholar 

  40. Šesták J. Kinetic phase diagrams as a consequence of sudden changing temperature or particle size. J Therm Anal Calorim. 2015;. doi:10.1007/s10973-014-4352-8.

    Google Scholar 

  41. Mareš JJ, Hubík P, Šesták J, Špička V, Krištofik J, Stávek J. Relativistic transformation of temperature and Mosengeil-Ott’s antinomy. Phys E. 2010;42:484–7.

    Article  Google Scholar 

  42. Mareš JJ, Hubík P, Krištofik J, Nesládek M. Selected topics related to the transport and superconductivity in boron-doped diamond. Sci Technol Adv Mater. 2008;9:044101–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří J. Mareš.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mareš, J.J. Do we know what the temperature is?. J Therm Anal Calorim 120, 223–230 (2015). https://doi.org/10.1007/s10973-015-4490-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4490-7

Keywords

Navigation