Journal of Thermal Analysis and Calorimetry

, Volume 121, Issue 3, pp 1081–1086 | Cite as

Screening and characterization of cocrystal formation between carbamazepine and succinic acid

  • Adriana Fuliaş
  • Gabriela Vlase
  • Titus Vlase
  • Lenuţa-Maria Şuta
  • Codruţa Şoica
  • Ionuţ Ledeţi


The pharmaceutical cocrystals are nowadays studied due to the fact that several properties, such as solubility, stability, dissolution rate and bioavailability, can be modulated. In this work, a cocrystal containing carbamazepine (CBZ) and succinic acid (SA) were prepared by the cogrinding method of the active substances, following the subjection of the physical mixture to microwave irradiation. The formation and stability of CBZ–SA cocrystal were explored using thermoanalytical methods (TG/DTG/HF), Fourier transform infrared spectroscopy and PXRD pattern diffraction. The preparation of the cocrystal was realized by slow evaporation of solvent (ethanol) from the mixture which contained the active substances in molar ratio CBZ:SA = 2:1.


Pharmaceutical cocrystal Carbamazepine Succinic acid Thermal analysis XRD 



This paper was published under the frame of European Social Found, Human Resources Development Operational Programme 2007–2013, Project No. POSDRU/159/1.5/S/136893.


  1. 1.
    Alhalaweh A, Kaialy W, Buckton G, Gill H, Nokhodchi A, Velaga SP. Theophylline cocrystals prepared by spray drying: physicochemical properties and aerosolization performance. AAPS PharmSciTech. 2013;14(1):265–76.CrossRefGoogle Scholar
  2. 2.
    Chiou D, Langrish T. A comparison of crystallisation approaches in spray drying. J Food Eng. 2008;88:177–85.CrossRefGoogle Scholar
  3. 3.
    Jung M, Kim J, Kim M, Alhalaweh A, Cho W, Hwang S, et al. Bioavailability of indomethacin saccharin cocrystals. J Pharm Pharmacol. 2010;62:1560–8.CrossRefGoogle Scholar
  4. 4.
    Schultheiss N, Newman A. Pharmaceutical cocrystals and their physicochemical properties. Cryst Growth Des. 2009;9:2950–67.CrossRefGoogle Scholar
  5. 5.
    Patil SP, Modi SR, Bansal AK. Generation of 1:1 carbamazepine:nicotinamide cocrystals by spray drying. Eur J Pharm Sci. 2014;62(1):251–7.CrossRefGoogle Scholar
  6. 6.
    Ober CA, Gupta RB. Formation of itraconazole–succinic acid cocrystals by gas antisolvent cocrystallization. AAPS PharmSciTech. 2012;13(4):1396–406.CrossRefGoogle Scholar
  7. 7.
    Rahman Z, Agarabi C, Zidan AS, Khan SR, Khan MA. Physico-mechanical and stability evaluation of carbamazepine cocrystal with nicotinamide. AAPS PharmSciTech. 2011;12(2):693–704.CrossRefGoogle Scholar
  8. 8.
    Findling RL, Ginsberg LD. The safety and effectiveness of open-label extended-release carbamazepine in the treatment of children and adolescents with bipolar I disorder suffering from a manic or mixed episode. Neuropsychiatr Dis Treat. 2014;10:1589–97.CrossRefGoogle Scholar
  9. 9.
    Parisi P, Moavero R, Verrotti A, Curatolo P. Attention deficit hyperactivity disorder in children with epilepsy. Brain Dev. 2010;32(1):10–6.CrossRefGoogle Scholar
  10. 10.
    Pan CW, Yu CH, Liao DL. Carbamazepine-induced hypersensitivity syndrome in chronic schizophrenia. Gen Hosp Psychiatry. 2013;35(5):575–6.CrossRefGoogle Scholar
  11. 11.
    Ettinger AB, Argoff CE. Use of antiepileptic drugs for nonepileptic conditions: psychiatric disorders and chronic pain. Neurotherapeutics. 2007;4(1):75–83.CrossRefGoogle Scholar
  12. 12.
    Kasim NA, Whitehouse M, Ramachandran C, Bermejo M, Lennernäs H, Hussain AS, et al. Molecular properties of WHO essential drugs and provisional biopharmaceutical classification. Mol Pharm. 2003;1:85–96.CrossRefGoogle Scholar
  13. 13.
    Hong YK, Hong WH, Chang HN. Selective extraction of succinic acid from binary mixture of succinic acid and acetic acid. Biotechnol Lett. 2000;22:871–4.CrossRefGoogle Scholar
  14. 14.
    Lin HL, Wu TK, Lin SY. Screening and characterization of cocrystal formation of metaxalone with short-chain dicarboxylic acids induced by solvent-assisted grinding approach. Thermochim Acta. 2014;575:313–21.CrossRefGoogle Scholar
  15. 15.
    Patel JR, Carlton RA, Needham TE, Chichester CO, Vogt FG. Preparation, structural analysis, and properties of tenoxicam cocrystals. Int J Pharm. 2012;436(1–2):685–706.CrossRefGoogle Scholar
  16. 16.
    Fulias A, Ledeti I, Vlase G, Vlase T. Physico-chemical solid-state characterization of pharmaceutical pyrazolones: an unexpected thermal behaviour. J Pharm Biomed. 2013;81–82:44–9.CrossRefGoogle Scholar
  17. 17.
    Anghel M, Vlase G, Bilanin M, Vlase T, Albu P, Fulias A, Tolan I, Doca N. Comparative study on the thermal behavior of two similar triterpenes from birch. J Therm Anal Calorim. 2013;113(3):1379–85.CrossRefGoogle Scholar
  18. 18.
    Ledeti I, Simu G, Vlase G, Săvoiu G, Vlase T, Suta L-M, Popoiu C, Fulias A. Synthesis and solid-state characterization of Zn(II) metal complex with acetaminophen. Rev Chim Buchar. 2013;64(10):1127–30.Google Scholar
  19. 19.
    Fulias A, Vlase G, Vlase T, Soica C, Heghes A, Craina M, Ledeti I. Comparative kinetic analysis on thermal degradation of some cephalosporins using TG and DSC data. Chem Cent J. 2013;7(1):70.CrossRefGoogle Scholar
  20. 20.
    Ledeti I, Fulias A, Vlase G, Vlase T, Bercean V, Doca N. Thermal behaviour and kinetic study of some triazoles as potential anti-inflammatory agents. J Therm Anal Calorim. 2013;114:1295–305.CrossRefGoogle Scholar
  21. 21.
    Ledeti IV, Bercean VN, Badea V, Balan M, Csunderlik C. The Alkylation of 1H-5-mercapto-3-phenyl-1,2,4-triazole and 4H-4-amino-5-mercapto-3-phenyl-1,2,4-triazole. Rev Chim Buchar. 2010;61(9):833–7.Google Scholar
  22. 22.
    Bercean VN, Ledeti IV, Badea V, Balan M, Csunderlik C. New heterocyclic tioether derived from 3-substituted-4H-4- amino-5-mercapto-1,2,4-triazoles and succinic acid. Rev Chim Buchar. 2010;61(11):1028–30.Google Scholar
  23. 23.
    Ledeti IV, Bercean VN, Tanase IM, Creanga AA, Badea V, Csunderlik C. New azomethine derivatives of 3-substituted-4H-4-amino-5-Ethoxycarbonyl-methylsulfanyl-1,2,4-triazoles as potential anti-inflammatory agents. Rev Chim Buchar. 2010;61(10):935–7.Google Scholar
  24. 24.
    Thakuria R, Delori A, Jones W, Lipert MP, Roy L, Rodríguez-Hornedo N. Pharmaceutical cocrystals and poorly soluble drugs. Int J Pharm. 2013;453:101–25.CrossRefGoogle Scholar
  25. 25.
    Lin HL, Lin SY, Zhang GC. Real-time co-crystal screening and formation between indomethacin and saccharin via DSC analytical technique or DSC–FTIR microspectroscopy. J Therm Anal Calorim. 2014. doi: 10.1007/s10973-014-3787-2.
  26. 26.
    Krishnan S, Raj CJ, Priya SM, Robert R, Dinakaran S, Das SJ. Optical and dielectric studies on succinic acid single crystals. Cryst Res Technol. 2008;43(8):845–50.CrossRefGoogle Scholar
  27. 27.
    Grzesiak AL, Lang M, Kim K, Matzger AJ. Comparison of the four anhydrous polymorphs of carbamazepine and the crystal structure of form I. J Pharm Sci. 2003;92(11):2260–71.CrossRefGoogle Scholar
  28. 28.
    Ansari MT, Pervez H, Shehzad MT, Saeed-ul-Hassan S, Mehmood Z, Shah SNH, Razi MT, Murtaza G. Improved physicochemical characteristics of artemisinin using succinic acid. Acta Pol Pharm. 2014;71(3):451–62.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Adriana Fuliaş
    • 1
  • Gabriela Vlase
    • 2
  • Titus Vlase
    • 2
  • Lenuţa-Maria Şuta
    • 1
  • Codruţa Şoica
    • 1
  • Ionuţ Ledeţi
    • 1
  1. 1.Faculty of PharmacyUniversity of Medicine and Pharmacy “Victor Babeş”TimisoaraRomania
  2. 2.Research Centre for Thermal Analysis in Environmental ProblemsWest University of TimisoaraTimisoaraRomania

Personalised recommendations