Skip to main content
Log in

Screening and characterization of cocrystal formation between carbamazepine and succinic acid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The pharmaceutical cocrystals are nowadays studied due to the fact that several properties, such as solubility, stability, dissolution rate and bioavailability, can be modulated. In this work, a cocrystal containing carbamazepine (CBZ) and succinic acid (SA) were prepared by the cogrinding method of the active substances, following the subjection of the physical mixture to microwave irradiation. The formation and stability of CBZ–SA cocrystal were explored using thermoanalytical methods (TG/DTG/HF), Fourier transform infrared spectroscopy and PXRD pattern diffraction. The preparation of the cocrystal was realized by slow evaporation of solvent (ethanol) from the mixture which contained the active substances in molar ratio CBZ:SA = 2:1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alhalaweh A, Kaialy W, Buckton G, Gill H, Nokhodchi A, Velaga SP. Theophylline cocrystals prepared by spray drying: physicochemical properties and aerosolization performance. AAPS PharmSciTech. 2013;14(1):265–76.

    Article  CAS  Google Scholar 

  2. Chiou D, Langrish T. A comparison of crystallisation approaches in spray drying. J Food Eng. 2008;88:177–85.

    Article  Google Scholar 

  3. Jung M, Kim J, Kim M, Alhalaweh A, Cho W, Hwang S, et al. Bioavailability of indomethacin saccharin cocrystals. J Pharm Pharmacol. 2010;62:1560–8.

    Article  CAS  Google Scholar 

  4. Schultheiss N, Newman A. Pharmaceutical cocrystals and their physicochemical properties. Cryst Growth Des. 2009;9:2950–67.

    Article  CAS  Google Scholar 

  5. Patil SP, Modi SR, Bansal AK. Generation of 1:1 carbamazepine:nicotinamide cocrystals by spray drying. Eur J Pharm Sci. 2014;62(1):251–7.

    Article  CAS  Google Scholar 

  6. Ober CA, Gupta RB. Formation of itraconazole–succinic acid cocrystals by gas antisolvent cocrystallization. AAPS PharmSciTech. 2012;13(4):1396–406.

    Article  CAS  Google Scholar 

  7. Rahman Z, Agarabi C, Zidan AS, Khan SR, Khan MA. Physico-mechanical and stability evaluation of carbamazepine cocrystal with nicotinamide. AAPS PharmSciTech. 2011;12(2):693–704.

    Article  CAS  Google Scholar 

  8. Findling RL, Ginsberg LD. The safety and effectiveness of open-label extended-release carbamazepine in the treatment of children and adolescents with bipolar I disorder suffering from a manic or mixed episode. Neuropsychiatr Dis Treat. 2014;10:1589–97.

    Article  CAS  Google Scholar 

  9. Parisi P, Moavero R, Verrotti A, Curatolo P. Attention deficit hyperactivity disorder in children with epilepsy. Brain Dev. 2010;32(1):10–6.

    Article  Google Scholar 

  10. Pan CW, Yu CH, Liao DL. Carbamazepine-induced hypersensitivity syndrome in chronic schizophrenia. Gen Hosp Psychiatry. 2013;35(5):575–6.

    Article  Google Scholar 

  11. Ettinger AB, Argoff CE. Use of antiepileptic drugs for nonepileptic conditions: psychiatric disorders and chronic pain. Neurotherapeutics. 2007;4(1):75–83.

    Article  CAS  Google Scholar 

  12. Kasim NA, Whitehouse M, Ramachandran C, Bermejo M, Lennernäs H, Hussain AS, et al. Molecular properties of WHO essential drugs and provisional biopharmaceutical classification. Mol Pharm. 2003;1:85–96.

    Article  Google Scholar 

  13. Hong YK, Hong WH, Chang HN. Selective extraction of succinic acid from binary mixture of succinic acid and acetic acid. Biotechnol Lett. 2000;22:871–4.

    Article  CAS  Google Scholar 

  14. Lin HL, Wu TK, Lin SY. Screening and characterization of cocrystal formation of metaxalone with short-chain dicarboxylic acids induced by solvent-assisted grinding approach. Thermochim Acta. 2014;575:313–21.

    Article  CAS  Google Scholar 

  15. Patel JR, Carlton RA, Needham TE, Chichester CO, Vogt FG. Preparation, structural analysis, and properties of tenoxicam cocrystals. Int J Pharm. 2012;436(1–2):685–706.

    Article  CAS  Google Scholar 

  16. Fulias A, Ledeti I, Vlase G, Vlase T. Physico-chemical solid-state characterization of pharmaceutical pyrazolones: an unexpected thermal behaviour. J Pharm Biomed. 2013;81–82:44–9.

    Article  Google Scholar 

  17. Anghel M, Vlase G, Bilanin M, Vlase T, Albu P, Fulias A, Tolan I, Doca N. Comparative study on the thermal behavior of two similar triterpenes from birch. J Therm Anal Calorim. 2013;113(3):1379–85.

    Article  CAS  Google Scholar 

  18. Ledeti I, Simu G, Vlase G, Săvoiu G, Vlase T, Suta L-M, Popoiu C, Fulias A. Synthesis and solid-state characterization of Zn(II) metal complex with acetaminophen. Rev Chim Buchar. 2013;64(10):1127–30.

    CAS  Google Scholar 

  19. Fulias A, Vlase G, Vlase T, Soica C, Heghes A, Craina M, Ledeti I. Comparative kinetic analysis on thermal degradation of some cephalosporins using TG and DSC data. Chem Cent J. 2013;7(1):70.

    Article  Google Scholar 

  20. Ledeti I, Fulias A, Vlase G, Vlase T, Bercean V, Doca N. Thermal behaviour and kinetic study of some triazoles as potential anti-inflammatory agents. J Therm Anal Calorim. 2013;114:1295–305.

    Article  CAS  Google Scholar 

  21. Ledeti IV, Bercean VN, Badea V, Balan M, Csunderlik C. The Alkylation of 1H-5-mercapto-3-phenyl-1,2,4-triazole and 4H-4-amino-5-mercapto-3-phenyl-1,2,4-triazole. Rev Chim Buchar. 2010;61(9):833–7.

    CAS  Google Scholar 

  22. Bercean VN, Ledeti IV, Badea V, Balan M, Csunderlik C. New heterocyclic tioether derived from 3-substituted-4H-4- amino-5-mercapto-1,2,4-triazoles and succinic acid. Rev Chim Buchar. 2010;61(11):1028–30.

    CAS  Google Scholar 

  23. Ledeti IV, Bercean VN, Tanase IM, Creanga AA, Badea V, Csunderlik C. New azomethine derivatives of 3-substituted-4H-4-amino-5-Ethoxycarbonyl-methylsulfanyl-1,2,4-triazoles as potential anti-inflammatory agents. Rev Chim Buchar. 2010;61(10):935–7.

    Google Scholar 

  24. Thakuria R, Delori A, Jones W, Lipert MP, Roy L, Rodríguez-Hornedo N. Pharmaceutical cocrystals and poorly soluble drugs. Int J Pharm. 2013;453:101–25.

    Article  CAS  Google Scholar 

  25. Lin HL, Lin SY, Zhang GC. Real-time co-crystal screening and formation between indomethacin and saccharin via DSC analytical technique or DSC–FTIR microspectroscopy. J Therm Anal Calorim. 2014. doi:10.1007/s10973-014-3787-2.

  26. Krishnan S, Raj CJ, Priya SM, Robert R, Dinakaran S, Das SJ. Optical and dielectric studies on succinic acid single crystals. Cryst Res Technol. 2008;43(8):845–50.

    Article  CAS  Google Scholar 

  27. Grzesiak AL, Lang M, Kim K, Matzger AJ. Comparison of the four anhydrous polymorphs of carbamazepine and the crystal structure of form I. J Pharm Sci. 2003;92(11):2260–71.

    Article  CAS  Google Scholar 

  28. Ansari MT, Pervez H, Shehzad MT, Saeed-ul-Hassan S, Mehmood Z, Shah SNH, Razi MT, Murtaza G. Improved physicochemical characteristics of artemisinin using succinic acid. Acta Pol Pharm. 2014;71(3):451–62.

    Google Scholar 

Download references

Acknowledgements

This paper was published under the frame of European Social Found, Human Resources Development Operational Programme 2007–2013, Project No. POSDRU/159/1.5/S/136893.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ionuţ Ledeţi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuliaş, A., Vlase, G., Vlase, T. et al. Screening and characterization of cocrystal formation between carbamazepine and succinic acid. J Therm Anal Calorim 121, 1081–1086 (2015). https://doi.org/10.1007/s10973-015-4473-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4473-8

Keywords

Navigation