Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 120, Issue 2, pp 1399–1405 | Cite as

Pyrolysis study of pectin by tunable synchrotron vacuum ultraviolet photoionization mass spectrometry

  • Shaolin Ge
  • Yingbo Xu
  • Zhenfeng Tian
  • Shike She
  • Lan Huang
  • Zhao Zhang
  • Yonghua Hu
  • Junjie Weng
  • Maoqi Cao
  • Liusi Sheng
Article

Abstract

The thermal decomposition of pectin was studied, and some major products were online analyzed by tunable synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS). The principal products were furfural, methyl 2-furoate and 5-oxo-tetrahydro-furan-2-carbaldehyde. Some new high molecular weight intermediate products were firstly observed thanks to the soft ionization and MSMS structural analysis of ions. The results demonstrated the variation of the pyrolysis product pool with temperatures, dividing the thermal decomposition process into two stages: the low-temperature stage for the intramolecular pyrolysis of galacturonic acid subunit at the chain ends of polymers and the high-temperature stage for the rupture of α-(1 → 4) glycosidic bond between galacturonic acid subunit. This work reported a new application of SVUV-PIMS in pectin pyrolysis and demonstrated its good performance in product analysis. The formation mechanisms of some major products from pectin pyrolysis were discussed based on the analysis of pyrolysates, which should provide insight into the pyrolysis behavior of pectin.

Keywords

Pectin Pyrolysis SVUV photoionization mass spectrometry 

Notes

Acknowledgements

The financial support from China National Tobacco Corporation [No. 110201301030(BR-05)] is acknowledged.

References

  1. 1.
    Ralet MC, Lerouge P, Quéméner B. Mass spectrometry for pectin structure analysis. Carbohydr Res. 2009;344:1798–807.CrossRefGoogle Scholar
  2. 2.
    Rouau X, Thibautt JF. Apple juice pectic substances. Carbohydr Polym. 1984;4:111–25.CrossRefGoogle Scholar
  3. 3.
    Thakur BR, Singh RK, Handa AK, Rao MA. Chemistry and uses of pectin—a review. Crit Rev Food Sci. 1997;37:47–73.CrossRefGoogle Scholar
  4. 4.
    Squire KS, Waymack BE. Thermal decomposition of pectin. 35th tobacco science research conference. 1981. p. 47.Google Scholar
  5. 5.
    Ohhishi A, Takagi E, Kato K. Thermal decomposition of pectic substances. Carbohydr Res. 1978;67:281–8.CrossRefGoogle Scholar
  6. 6.
    Zhou S, Xu YB, Wang CH, Tian ZF. Pyrolysis behavior of pectin under the conditions that simulate cigarette smoking. J Anal Appl Pyrolysis. 2011;91:232–40.CrossRefGoogle Scholar
  7. 7.
    McGrath T, Sharma R, Hajaligol M. An experimental investigation into the formation of polycyclic-aromatic hydrocarbons (PAH) from pyrolysis of biomass materials. Fuel. 2001;80:1787–97.CrossRefGoogle Scholar
  8. 8.
    Ulrike ES, Herbert K, Gerhard D. Thermal analysis of chemically and mechanically modified pectins. Food Hydrocoll. 2007;2:1101–12.Google Scholar
  9. 9.
    Aries RE, Gutteridge CS, Laurie WA. A pyrolysis-mass spectrometry investigation of pectin methylation. Anal Chem. 1988;60:1498–502.CrossRefGoogle Scholar
  10. 10.
    Bahng MK, Mukarakate C, Robichaud DJ, Nimlos MR. Current technologies for analysis of biomass thermochemical processing: a review. Anal Chim Acta. 2009;65:117–38.CrossRefGoogle Scholar
  11. 11.
    Jiao QJ, Zhu YL, Xing JC, Ren H, Huang H. Thermal decomposition of RDX/AP by TG–DSC–MS–FTIR. J Therm Anal Calorim. 2014;116:1125–31.CrossRefGoogle Scholar
  12. 12.
    Quan C, Li A, Gao N. Research on pyrolysis of PCB waste with TG–FTIR and Py-GC/MS. J Therm Anal Calorim. 2012;110:1463–70.CrossRefGoogle Scholar
  13. 13.
    Hao JF, Guo JZ, Ding L. TG–FTIR, Py-two-dimensional GC–MS with heart-cutting and LC–MS/MS to reveal hydrocyanic acid formation mechanisms during glycine pyrolysis. J Therm Anal Calorim. 2014;115:667–73.CrossRefGoogle Scholar
  14. 14.
    Qi F. Combustion chemistry probed by synchrotron VUV photoionization mass spectrometry. Proc Combust Inst. 2013;34:33–63.CrossRefGoogle Scholar
  15. 15.
    Cool TA, Nakajima K, Mostefaoui TA, Qi F, McIlroy A, Westmoreland PR, Law ME, Poisson L, Peterka DS, Ahmed M. Selective detection of isomers with photoionization mass spectrometry for studies of hydrocarbon flame chemistry. J Chem Phys. 2003;119:8356–65.CrossRefGoogle Scholar
  16. 16.
    Pan Y, Zhang LD, Guo HJ, Deng LL, Qi F. Photoionisation and photodissociation studies of nonvolatile organic molecules by synchrotron VUV photoionisation mass spectrometry and theoretical calculations. Int Rev Phys Chem. 2010;29:369–401.CrossRefGoogle Scholar
  17. 17.
    Weng JJ, Jia LY, Wang Y, Sun SB, Tang XF, Zhou ZY, Kohse-Hoinghaus K, Qi F. Pyrolysis study of poplar biomass by tunable synchrotron vacuum ultraviolet photoionization mass spectrometry. Proc Combust Inst. 2013;34:2347–54.CrossRefGoogle Scholar
  18. 18.
    Fang WZ, Gong L, Shan XB, Sheng LS. Thermaldesorption/tunable vacuum-ultraviolet time-of-flight photoionization aerosol mass spectrometry for investigating secondary organic aerosols in chamber experiments. Anal Chem. 2011;83:9024–32.CrossRefGoogle Scholar
  19. 19.
    Linda P, Marino G, Pignataro S. A comparison of sensitivities to substituent effects of five-membered heteroaromatic rings in gas phase ionization. J Chem Soc B. 1971;1:1585–7.CrossRefGoogle Scholar
  20. 20.
    Grutzmacher HF, Spilker R. Loss of CO from 4,6-dimethyl-2-pyrone and 2,6-dimethyl-4-pyrone radical cations. Org Mass Spectrom. 1985;20:258–9.CrossRefGoogle Scholar
  21. 21.
    Moldoveanu SC. Analytical pyrolysis of natural organic polymers. 1st ed. Amsterdamp: Elsevier Science B.V; 1998.Google Scholar
  22. 22.
    Klapstein D, MacPherson CD, O’Brien RT. The photoelectron spectra and electronic structure of 2-carbonyl furans. Can J Chem. 1990;68:747–54.CrossRefGoogle Scholar
  23. 23.
    Traeger JC, McLouglin RG, Nicholson AJC. Heat of formation for acetyl cation in the gas phase. J Am Chem Soc. 1982;104:5318–22.CrossRefGoogle Scholar
  24. 24.
    Veszpremi T, Nyulaszi L, Nagy J. Ultraviolet photoelectron spectroscopy and quantum-mechanical study of alkyl-and trimethylsilyl-furanes. J Organomet Chem. 1987;331:175–80.CrossRefGoogle Scholar
  25. 25.
    Dewar MJS, Worley SD. Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation. J Chem Phys. 1969;50:654–67.CrossRefGoogle Scholar
  26. 26.
    Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA. A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J Chem Phys. 1999;110:2822–7.CrossRefGoogle Scholar
  27. 27.
    Brown AL, Dayton DC, Nimlos MR, Daily JW. Characterization of biomass pyrolysis vapors with molecular beam, single photon ionization time-of-flight mass spectrometry. Chemosphere. 2001;42:663–9.CrossRefGoogle Scholar
  28. 28.
    Collard FX, Blin J. A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew Sustain Energy Rev. 2014;38:594–608.CrossRefGoogle Scholar
  29. 29.
    Couhert C, Commandre JM, Salvador S. Is it possible to predict gas yields of any biomass after rapid pyrolysis at high temperature from its composition in cellulose, hemicellulose and lignin. Fuel. 2009;88:408–17.CrossRefGoogle Scholar
  30. 30.
    Madson MA, Feather MS. Acid-catalyzed decarboxylation of d-xyluronic, d-galacturonic and D-gly-cero-D-gulo-hepturonic acid. Carbohydr Res. 1979;70:307–11.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Shaolin Ge
    • 1
  • Yingbo Xu
    • 1
  • Zhenfeng Tian
    • 1
  • Shike She
    • 1
  • Lan Huang
    • 1
  • Zhao Zhang
    • 1
  • Yonghua Hu
    • 1
  • Junjie Weng
    • 2
  • Maoqi Cao
    • 2
  • Liusi Sheng
    • 2
  1. 1.Research and Development CentreChina Tobacco Anhui Industrial Co., Ltd.HefeiChina
  2. 2.National Synchrotron Radiation Laboratory, School of Nuclear Science and TechnologyUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations