Journal of Thermal Analysis and Calorimetry

, Volume 120, Issue 2, pp 1365–1373 | Cite as

The heat of immersion of modified silica in polar and nonpolar liquids



The influence of the degree of silica surface coverage by trimethylsilyl groups on the heat of immersion in various polar and nonpolar liquids has been investigated using microcalorimetry technique. The decrease of Gibbs free energy γ as a result of replacement a solid/gas interface with the solid/liquid is accompanied by the emission of heat, which value is determined by the intensity of the interaction of the molecules of liquid with the solid surface and area of interaction. The polarity of surface decreases due to substitution of polar silanol groups for the nonpolar trimethylsilyl (TMS) groups on the SiO2 surface, and consequently, the intensity of the interaction of this surface with polar and nonpolar substances changes. The heats of immersion of modified silica in polar triethylamine (TEA), 2-propanol, acetonitrile and water decrease almost linear with increasing degree of surface modification. The changes of heat of immersion of modified silica in nonpolar liquids are minor and may be associated with some decrease in the specific surface area of the samples owing to the synthesis. The heat of immersion in water is less than in hexane and decane at high degrees of surface modification with TMS groups (0.75 or higher), indicating the hydrophobic nature of the surface. The highest heat of immersion is observed for TEA, what is consistent with the specific interaction of a strong organic base TEA with surface silanol groups.


Heat of immersion Modified silica Trimethylsilyl groups Polar and nonpolar interactions 



The author is grateful to the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007–2013/under REA grant agreement no PIRSES-GA-2013-612484 for financial support.


  1. 1.
    Adamson AW, Gast AP. Physical chemistry of surfaces. 6th ed. New York: Wiley; 1997.Google Scholar
  2. 2.
    Kiselev AV. Intermolecular interactions in adsorption and chromatography. Moscow: Vysshaya Shkola; 1986 (in Russian).Google Scholar
  3. 3.
    Kiselev AV. Non-specific and specific interactions of molecules of different electronic structures with solid surfaces. Discuss Faraday Soc. 1965;40:205–18.CrossRefGoogle Scholar
  4. 4.
    Summ BD, Gorjunov YV. Physico-chemical principles of wetting and spreading. Moscow: Chemistry; 1976 (in Russian).Google Scholar
  5. 5.
    Rosenholm JB. Wetting of surfaces and interfaces: a conceptual equilibrium thermodynamic approach. In: Tadros TF, editor. Colloid stability: the role of surface forces. New York: Wiley; 2006. p. 1–83. doi: 10.1002/9783527631094.ch1.Google Scholar
  6. 6.
    Kojic-Prodic B, Molcanov Kr. The nature of hydrogen bond: new insights into old theories: review. Acta Chim Slov. 2008;55:692–708.Google Scholar
  7. 7.
    Somasundaran P, editor. Encyclopedia of surface and colloid science, vol. 1. Boca Raton: CRC Press; 2006.Google Scholar
  8. 8.
    Melrose JC. Immersion heat relationships for homogeneous surfaces. J Colloid Interface Sci. 1967;24:416–26.CrossRefGoogle Scholar
  9. 9.
    Melrose JC. On the thermodynamic relations between immersional and adhesional wetting. J Colloid Interface Sci. 1965;42:801–21. doi: 10.1016/0095-8522(65)90054-1.CrossRefGoogle Scholar
  10. 10.
    Good RJ, van Oss CJ. The modern theory of contact angles and the hydrogen bond components of surface energies. In: Schrader M, Loeb G, editors. Modern approaches to wettability: theory and applications. New York: Plenum; 1992. p. 1–27.CrossRefGoogle Scholar
  11. 11.
    Van Oss CJ, Chaudhury MK, Good RJ. Interfacial Lifshitz-van der waals and polar interactions in macroscopic systems. Chem Rev. 1988;88:927–41.CrossRefGoogle Scholar
  12. 12.
    Girifalco LA, Good RJ. A theory for the estimation of surface and interfacial energies. I. Derivation and application to interfacial tension. J Phys Chem. 1957;61:904–9.CrossRefGoogle Scholar
  13. 13.
    Fowkes FM. Role of acid-base interfacial bonding in adhesion. J Adhes Sci Technol. 1987;1:7–27.CrossRefGoogle Scholar
  14. 14.
    Rehbinder PA. Surface phenomena in disperse systems. Physical-chemical mechanics. Moscow: Nauka Press; 1979 (in Russian).Google Scholar
  15. 15.
    Giraldo L, Moreno-Piraján JC. Relation between immersion enthalpies of activated carbons in different liquids, textural properties, and phenol adsorption. J Therm Anal Calorim. 2014;117:1517–23. doi: 10.1007/s10973-014-3940-y.CrossRefGoogle Scholar
  16. 16.
    Rodríguez-Estupiñán P, Giraldo L, Moreno-Piraján JC. Modified surface chemistry of activated carbons correlation with immersion enthalpy. J Therm Anal Calorim. 2013;114:245–51. doi: 10.1007/s10973-012-2932-z.10.CrossRefGoogle Scholar
  17. 17.
    Murillo YS, Giraldo L, Moreno-Piraján JC. Determination of partial immersion enthalpy in the interaction of water and activated carbon. J Therm Anal Calorim. 2011;104:555–9. doi: 10.1007/s10973-010-1158-1.CrossRefGoogle Scholar
  18. 18.
    Rodríguez GA, Giraldo L, Moreno JC. Calorimetric study of the immersion enthalpy of activated carbon cloths in different solvents and aqueous solutions. J Therm Anal Calorim. 2009;96:547–52. doi: 10.1007/s10973-007-8976-9.CrossRefGoogle Scholar
  19. 19.
    Betancourt M, Giraldo L, Moreno S, Molina R, Moreno JC. Relation between immersion enthalpy and the acidity of clay pillared minerals. J Therm Anal Calorim. 2008;92:899–904. doi: 10.1007/s10973-007-7978-y.CrossRefGoogle Scholar
  20. 20.
    Sakizci M, Erdoğan Alver B, Yörükoğullari E. Thermal behavior and immersion heats of selected clays from Turkey. J Therm Anal Calorim. 2009;98:429–36. doi: 10.1007/s10973-009-0294-y.CrossRefGoogle Scholar
  21. 21.
    González-Martín ML, Jańczuk B, Bruque JM. Relation between the heat of immersion and surface Gibbs energy fluorite and cassiterite. J Therm Anal. 1995;44:1087–94. doi: 10.1007/BF02547537.CrossRefGoogle Scholar
  22. 22.
    Dubinin MM, Isirikyan AA, Nikolaev KM, Poiyakov NS, Tatarinova LI. Heat of immersion of silica gel in normal alkanes and alcohols. Division of chemical science. Bull Acad Sci USSR. 1986;35:1283–6. doi: 10.1007/BF00956617.CrossRefGoogle Scholar
  23. 23.
    Iler RK. The chemistry of silica. Chichester: Wiley; 1979.Google Scholar
  24. 24.
    Legrand AP, editor. The surface properties of silicas. New York: Wiley; 1998.Google Scholar
  25. 25.
    Dabrowski A, Tertykh VA, editors. Adsorption on new and modified inorganic sorbents, studies in surface science and catalysis. Amsterdam: Elsevier; 1996.Google Scholar
  26. 26.
    Takei T, Eriguchi E, Fuji M, Watanabe T, Chikazawa M. Heat of immersion of amorphous and crystalline silicas in water: effect of crystallinity. Thermochim Acta. 1998;308:139–45.CrossRefGoogle Scholar
  27. 27.
    Tyler AJ, Taylor JAG, Pethica BA, Hockey JA. Heat of immersion studies on characterized silicas. Trans Faraday Soc. 1971;67:483–92. doi: 10.1039/TF9716700483.CrossRefGoogle Scholar
  28. 28.
    Laskowski J, Kitchener JA. The hydrophilic-hydrophobic transition on silica. J Colloid Interface Sci. 1969;29:670–9.CrossRefGoogle Scholar
  29. 29.
    Buszewski B, Szymon B, Rychlicki G. Investigation of silanol activity on the modified silica surfaces using microcalorimetric measurements. J Sep Sci. 2011;34:773–9. doi: 10.1002/jssc.201000736.CrossRefGoogle Scholar
  30. 30.
    Krysztafkiewicz A, Rager B, Jesionowski T. The effect of surface modification on physicochemical properties of precipitated silica. J Mater Sci. 1997;32:1333–9. doi: 10.1023/A:1018564808810.CrossRefGoogle Scholar
  31. 31.
    Gun’ko VM, Vedamuthu MS, Henderson GL, Blitz JP. Mechanism and kinetics of hexamethyldisilazane reaction with a fumed silica surface. J Colloid Interface Sci. 2000;228:157–70.CrossRefGoogle Scholar
  32. 32.
    Bergna HE, Roberts WO, editors. Colloidal silica: fundamentals and applications. Boca Raton: CRC Press; 2005.Google Scholar
  33. 33.
    Gun’ko VM, Mironyuk IF, Zarko VI, Voronina EF, Turov VV, Pakhlov EM, Goncharuk EV, Nychiporuk YM, Vlasova NN, Gorbik PP, Mishchuk OA, Chuiko AA, Kulik TV, Palyanytsya BB, Pakhovchishin SV, Skubiszewska-Zięba J, Janusz W, Turov AV, Leboda R. Morphology and surface properties of fumed silicas. J Colloid Interface Sci. 2005;289:427–45.CrossRefGoogle Scholar
  34. 34.
    Suratwala TI, Hanna ML, Miller EL, Whitman PK, Thomas IM, Ehrmann PR, Maxwell RS, Burnham AK. Surface chemistry and trimethylsilyl functionalization of Stober silica sols. J Non-Cryst Solids. 2003;316:349–63.CrossRefGoogle Scholar
  35. 35.
    Tertykh VA, Belyakova LA. Chemical reactions involving the silica surface. Kiev: Naukova Dumka; 1991 (in Russian).Google Scholar
  36. 36.
    Zhdanov SP, Kosheleva LS, Titova TI. IR study of hydroxylated silica. Langmuir. 1987;3:960–7.CrossRefGoogle Scholar
  37. 37.
    Brown ME, Gallagher PK, editors. Handbook of thermal analysis and calorimetry: applications to inorganic and miscellaneous materials. New York: Elsevier; 2003. doi: 10.1016/S1573-4374(03)80005-5.Google Scholar
  38. 38.
    Maggi R, Martens JA, Poncelet G, Grange P, Jacobs PA, Delmon B, editors. Preparation of catalysts, vol. 7. New York: Elsevier; 1998.Google Scholar
  39. 39.
    Kapoor V. J., Brown W.D. editors. Proceedings of the Third Symposium on Silicon Nitride and Silicon Dioxide Thin Insulating Films. Pannington: The Electrochemical Society Inc.; 1994.Google Scholar
  40. 40.
    Laurence C, Gal J-F. Lewis Basicity and Affinity Scales: Data and Measurement. Chichester: Wiley; 2010. doi: 10.1002/9780470681909.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  1. 1.Chuiko Institute of Surface ChemistryNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations