Journal of Thermal Analysis and Calorimetry

, Volume 121, Issue 1, pp 195–201 | Cite as

Study of coatings by thermal analysis in a monument built with calcarenite

  • María Luisa Franquelo
  • María Dolores Robador
  • José Luis Perez-Rodriguez


In this research, characterization of materials either added during restoration or formed by environmental contamination in the Seville City Hall, built with calcarenite stone, was investigated by thermal methods. Three different mortars for restoration have been characterized: (a) lime micro-mortar for internal consolidation of mortar itself, (b) mortar for reconstruction of deteriorated areas and (c) mortar with Portland cement. Acrylate polymer as consolidant and protection used was characterized. Addition of gypsum or “white cement” has been also applied in the restoration. Altered materials as black crusts constituted by gypsum, calcite and organic compound were determined by thermal analysis. Patina with high concentration of hydrated calcium oxalate, and the transformation mechanism of calcium oxalate into calcium carbonate and formation of calcium oxide produced by decomposition of the calcite were also characterized in the studied monument by thermal analysis. The patina with hydrated calcium oxalate produced by high biological activity was also studied.


Cultural heritage Mortars Gypsum Acrylic resin Black crust Weddellite 



The financial support of the Interministerial Spanish Commission de Ciencia y Tecnología (CICYT) under project BIA2009-12618 and the Junta de Andalucia (TEP-6558) are acknowledged. The authors wish to thank Mr. R. Pérez-Maqueda for typing and composition of the manuscript and for his suggestions and technical guidance with the computer.


  1. 1.
    Foster AM, Carter K, Banfill PFF, Kayan G. Green maintenance for historic masonry buildings: an energing concept. Build Res Inform. 2011;39:656–64.Google Scholar
  2. 2.
    Odgers D, Henry A. English heritage practical building conservation stone. Farnham: Ashgate Publishing Limited; 2012.Google Scholar
  3. 3.
    Gibbons P. The preparation and use of lime mortars; technical advice note Edinburgh: Historic Scotland; 2003.Google Scholar
  4. 4.
    Szemerey B, Török A. Time-dependent changes in the strength of repair mortar used in the loss compensation of stone. Environ. Earth Sci 2011;63:1613–21.Google Scholar
  5. 5.
    Torney C, Foster AM, Szadurski M. Specialist restoration mortars for stone elements: a comparison of the physical properties of two stone repair materials. Herit Sci. 2014;2:1.CrossRefGoogle Scholar
  6. 6.
    Robador MD. Restauración de la bóveda de la Casa Consistorial del siglo XVI de Sevilla. Su diagnosis, limpieza y consolidación. Apuntes del Real Alcázar de Sevilla 2009;10:92–115.Google Scholar
  7. 7.
    Robador MD. Restauración del conjunto renacentista, escalera y bóvedas de la Casa Consistorial del siglo XVI de Sevilla. Apuntes del Real Alcázar de Sevilla. 2010;11:146–77.Google Scholar
  8. 8.
    Pineda P, Robador MD, Pérez-Rodríguez JL. Characterization and repair measures of the medieval building materials of a Hispanic-Islamic construction. Constr Build Mater. 2013;41:612–33.CrossRefGoogle Scholar
  9. 9.
    Robador MD, Arroyo F, Perez-Rodríguez JL. Study and restoration of the Seville City may facade. Constr Build Mater. 2014;53:370–80.CrossRefGoogle Scholar
  10. 10.
    Dorn RI. Rock Coatings: Elsevier Amsterdam; 1998.Google Scholar
  11. 11.
    Whalley WB, Smith BJ, Magee RW. Effects of particulate air pollutants on materials: investigation on surface crust formation. In: Webster RGM, editors. Stone cleaning and the nature soiling and decay mechanisms of stone. London: Donhead; 1992. p. 227–34.Google Scholar
  12. 12.
    Smith BJ., Magee RW, Whalley WB. Breakdown patterns of quartz sand stone in a polluted urban environment Belfast, N. Ireland. In: Robinson ARD, Williams RGB, editors. Rock weathering and landform evolution. Chischester: Wiley; 1994. p. 131–150.Google Scholar
  13. 13.
    Del Monte M, Sabbioni C. Gypsum crust and fly-ash particles on carbonatic outcrops. Arch Meteoral Geophys Bioclimatel Ser B. 1984;35:105–11.CrossRefGoogle Scholar
  14. 14.
    Blázquez F, Garcia-Valles M, Krumbein W, Sterflenger K, Vendrell-Saz M. Microstromatolic deposits on granitic monuments: development and decay. Eur J Mineral. 1997;9:889–901.CrossRefGoogle Scholar
  15. 15.
    Sanjurjo Sanchez J, Vidal Romani JR, Alves CAS. Characterisation, typology and origin of patinas in the church of los Capuchinos, A Coruña NW (Spain). In: 6th international symposium of the conservation of monuments in the Mediterranean Basin, Lisbon; 2004. p. 202–206.Google Scholar
  16. 16.
    Diakumaku E, Gorbushina AA, Krumbein WE, Pnina L. Black fungi in marble and limestones—an aesthetical, chemical and physical problems for the conservation. Sci Total Environ. 1995;167:295–304.CrossRefGoogle Scholar
  17. 17.
    Wollenzien W, de Hong GS, Krumbein WE, Urzi C. On the isolation of microbial fungi occurring on and in marble and other calcareous rocks. Sci Total Environ. 1995;167:287–94.CrossRefGoogle Scholar
  18. 18.
    Garcia Valles M, Urzi C, De Leo F, Salamote P, Wendrell-Saz M. Biological weathering and mineral deposits of the Belivi marble quarry (Ephesis, Turkey). Biodegrad. 2009;46: 221–7.Google Scholar
  19. 19.
    Del Monte M, Sabioni C. Weddellite on limestone in the Venice environmental. Int Environ Sci Technol. 1983;17:518–22.CrossRefGoogle Scholar
  20. 20.
    Del Monte C, Sablioni C, Zappia G. The origin of calcium oxalate on historical buildings monuments and natural outcrops. Sci Total Environ. 1987;67:17–39.CrossRefGoogle Scholar
  21. 21.
    Chen J, Blume HP, Beyer L. Weathering of rocks induced by liquens colonization—a review. Catena. 2000;39:121–46.CrossRefGoogle Scholar
  22. 22.
    Edwards HGM, Russell NC, Seaward MRD. Calcium oxalate in liquen biodeterioration studied using FT Raman spectroscopy. Spectrochim Acta Part A. 1997;53:99–105.Google Scholar
  23. 23.
    Lazarini L, Borrelli E, Bonabdelli M, Antonelli F. Insight into the conservation problems of the stone building, “Bab Agnaou” a XII cent. Monumental gate in Marrakesch (Morocco). J Cult Herit. 2007;8:315–22.CrossRefGoogle Scholar
  24. 24.
    Lazzarini L, Salvatori O. A reassement of the formation of the patina called scialbatura. Stud Conserv. 1989;34:20–6.Google Scholar
  25. 25.
    Perez-Rodriguez JL, Duran A, Centeno MA, Martinez-Blanes JM, Robador MD. Thermal analysis of monument patina containing hydrated calcium oxalates. Thermochim Acta. 2011;512:5–12.CrossRefGoogle Scholar
  26. 26.
    Perez-Rodriguez JL, Duran A, Perez-Maqueda LA. Thermal study of unaltered and altered dolomitic rock sample from ancient monuments. The case of Villarcayo de Merindad de Castilla la Vieja (Burgos, Spain). J Therm Anal Calorim. 2011;104:467–74.Google Scholar
  27. 27.
    Duran A, Robador MD, Perez-Rodriguez JL. Degradation of two historic buildings in northern Spain by formation of oxalate and sulphate-based compounds. Int J Archit Herit. 2012;6:342–58.CrossRefGoogle Scholar
  28. 28.
    Moropoulou A, Bakolas A, Bisbikou K. Characterization of ancient, byzantine and later historic mortars by thermal and X-ray diffraction techniques. Thermochim Acta. 1995;269:779–95.CrossRefGoogle Scholar
  29. 29.
    Brosman DA, Sanders JP, Mart SA. Application of thermal analysis in preservation and restoration of historic masonry materials. J Therm Anal Calorim. 2011;106:109–15.CrossRefGoogle Scholar
  30. 30.
    Sabbioni C, Zappia G, Ghedini N, Gobbi G, Favoni O. Black crusts on ancient mortars. Atmos Envion. 1998;32:215–23.CrossRefGoogle Scholar
  31. 31.
    Gembinski C, Charda AE, Price B, McGhie AR. Application of TG/DTA/MS to the historic preservation of stone. J Therm Anal Calorim. 2000;59:601–9.CrossRefGoogle Scholar
  32. 32.
    Ghedini N, Sabbioni C, Pantani M. Thermal analysis in cultural heritage: safeguard and application. Thermochim Acta. 2003;406:105–13.CrossRefGoogle Scholar
  33. 33.
    Riontino C, Sabbioni C, Ghedini N, Zappiaa G, Gobbi G, Favoni O. Evaluation of atmospheric deposition on historic buildings by combined thermal analysis and combustion techniques. Thermochim Acta. 1998;321:215–22.CrossRefGoogle Scholar
  34. 34.
    Cataldi A, Dorigato A, Deflorian F, Pegoretti A. Thermo-chemical properties of innovative microcrystalline cellulose filled composites for art protection and restoration. J Mater Sci. 2014;49:2035–44.CrossRefGoogle Scholar
  35. 35.
    Kök MV. Thermal characterization of different origin class-G cements. J Therm Anal Calorim. 2014;115:1533–9.CrossRefGoogle Scholar
  36. 36.
    Guerrero Montes MA. Diagnóstico del estado de alteración de la piedra del palacio consistorial de Sevilla. Causas y mecanismos. Tesis Doctoral: Universidad de Sevilla; 1990.Google Scholar
  37. 37.
    Alcalde M, Martin A. Morfología macroscópica de alteración acelerada de algunos materiales pétreos de monumentos de Andalucía. Mater Construc. 1990;40:5–27.Google Scholar
  38. 38.
    Espinosa J, Villegas R. Estudio de los materiales, causas de alteración y propuestas de tratamientos del Ayuntamiento de Sevilla IAPH. Centro e Intervención el Patrimonio Histórico. Consejería de Cultura: Junta de Andalucía. Sevilla; 2000.Google Scholar
  39. 39.
    Brosman DA, Sanders JP, Hart SA. Application of thermal analysis in preservation and restoration of historic masonry materials. Part A. Characterization of materials. J. Therm. Anl. Calorim. 2011;106:109-15.Google Scholar
  40. 40.
    Yew NC. Rambli Sulong NH, Yew MK, Amalina MA, Hohan MR. The formulation and study of the thermal stability and mechanical properties of an acrylic coating using chicken eggshell as a novel bio-filler. Prog Org Coat. 2013;76:1549–55.CrossRefGoogle Scholar
  41. 41.
    Perez-Rodriguez JL, Maqueda C. Jiménez de Haro MC. Rodríguez Rubio P. Effect of pollution on polychromed ceramic statues. Atmos Environ. 1998;32:993–8.CrossRefGoogle Scholar
  42. 42.
    Saiz-Jimenez C. Deposition of airborne organic pollutants on historic buildings. Atmos Environ. 1994;278:77–85.Google Scholar
  43. 43.
    Frost RL, Weier ML. Thermal treatment of weddellite—a Raman an infrared emission spectroscopy study. Thermochim Acta. 2003;406:221–32.CrossRefGoogle Scholar
  44. 44.
    Campanello L, Cardarelli E, Curini R, Dàscanzo G, Tomasetti M. Thermogravimetric analysis of human renal calculi sampled in 19th century patients: discussion on the basis of their alimentary custom. J Therm Anal Calorim. 1992;38:2707–17.CrossRefGoogle Scholar
  45. 45.
    Carrasco F. Kinetic-study of the thermal decomposition of monohydrated calcium oxalate by thermogravimetric analysis. Afinidad. 1991;48:19–24.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • María Luisa Franquelo
    • 1
  • María Dolores Robador
    • 2
  • José Luis Perez-Rodriguez
    • 1
  1. 1.Materials Science Institute of SevilleCSIC-Seville UniversitySevilleSpain
  2. 2.Technical Architecture FacultyUniversity of SevilleSevilleSpain

Personalised recommendations