Journal of Thermal Analysis and Calorimetry

, Volume 121, Issue 1, pp 491–497 | Cite as

Thermal decomposition of inclusion compounds on the base of the metal–organic framework [Zn2(bdc)2(dabco)]

Part I
  • Vladimir A. Logvinenko
  • Danil N. Dybtsev
  • Vsevolod A. Bolotov
  • Vladimir P. Fedin


Metal–organic frameworks (MOFs) have promising practical applications in gas storage, separation and fine purification of substances, and also in catalysis. These MOFs are crystalline compounds consisting of metal ions coordinated by bridging organic ligands with the formation of porous structures. We study the kinetic stability of two inclusion compounds on the base of a such framework: [Zn2(bdc)2(dabco)]·nL (bdc2− = terephthalate, dabco = 1,4-diazabicyclo[2.2.2]octane, L = cyclohexane and benzene). The cyclohexane compound is more stable than the benzene compound, although the kinetic diameters of the guest molecules are almost equal. So as the centrosymmetrical cyclohexane molecule can easily transform the chair conformation to the bath conformation, it can have the influence on the steric hindrance (as well as on the activation barrier) for the guest molecules removal. Therefore, the entropy contribution is as favorable factor, as the energetic one in the kinetic stability of the supramolecular compounds.


Inclusion compounds Kinetic stability Metal–organic frameworks Non-isothermal kinetics 



This work was partially supported by the Russian Foundation for Basic Research (Grant 14–03–00291).


  1. 1.
    Fromm KM. Coordination polymer networks with s-block metal ions. Coord Chem Rev. 2008;252:856–85.CrossRefGoogle Scholar
  2. 2.
    Kirillov AM. Hexamethylenetetramine: an old new building block for design of coordination polymers. Coord Chem Rev. 2011;255:1603–22.CrossRefGoogle Scholar
  3. 3.
    Mani–Biswas M, Tahir Cagin T. Insights from theoretical calculations on structure, dynamics, phase behavior and hydrogen sorption in nanoporous metal organic frameworks. Comput Theor Chem. 2012;987:42–56.CrossRefGoogle Scholar
  4. 4.
    Lyszczek R, Iwan M. Investigation of desolvation process in lanthanide dinicotinates. J Therm Anal Calorim. 2011;103:633–9.CrossRefGoogle Scholar
  5. 5.
    Jiang C-H, Song LF, Jiao CL, Zhang J, Sun LX, Xu F, Du Y, Cao Z. Exceptional thermal stability and thermodynamic properties of lithium based metal–organic framework. J Therm Anal Calorim. 2011;103:373–80.CrossRefGoogle Scholar
  6. 6.
    Zhou YZ, Sun LX, Cao Z, Zhang J, Xu F, Song LF, Zhao ZM, Zou YJ. Heat capacities and thermodynamic properties M(HBTC)(4,4`-bipy)·3DMF (M = Ni and Co). J Therm Anal Calorim. 2012;110:949–54.CrossRefGoogle Scholar
  7. 7.
    Dybtsev DN, Yutkin MP, Peresypkina EV, Virovets AV, Serre C, Ferey G, Fedin VP. Isoreticular homochiral porous metal–organic structures with tunable pore sizes. Inorg Chem. 2007;46:6843–5.CrossRefGoogle Scholar
  8. 8.
    Dybtsev DN, Yutkin MP, Samsonenko DG, Fedin VP, Nuzhdin AL, Bezrukov AA, Bryliakov RP, Talsi EP, Belosludov RV, Mizuseki H, Kawazoe Y, Subbotin OS, Belosludov VR. Modular homochiral porous coordination polymers: rational design, enantioselective guest exchange sorption and ab initio calculations of host–guest interactions. Chem Eur J. 2010;10:348–56.Google Scholar
  9. 9.
    Yin Z, Zeng MH. Recent advance in porous coordination polymers from the view-point of crystalline-state transformation. Sci China Chem. 2011;54:1371–94.CrossRefGoogle Scholar
  10. 10.
    Dyadin YuA, Soldatov DV, Logvinenko VA, Lipkovsky J. Contact stabilization of host complex molecules during clathrate formation: the pyridine–zinc nitrate and the pyridine–cadmium nitrate systems. J Coord Chem. 1996;37:63–75.CrossRefGoogle Scholar
  11. 11.
    Logvinenko V, Dybtsev D, Fedin V, Drebushchak V, Yutkin M. The stability of inclusion compounds under heating. Part 2. The stability of inclusion compounds of layered zinc camphorate, linked by linear N-donor ligands. J Therm Anal Calorim. 2010;100:183–9.CrossRefGoogle Scholar
  12. 12.
    Logvinenko VA, Yutkin MP, Zavakhina MS, Fedin VP. Porous metal–organic frameworks (MOFs) as matrices for inclusion compounds. Kinetic stability under heating. J Therm Anal Calorim. 2012;109:555–60.CrossRefGoogle Scholar
  13. 13.
    Dybtsev DN, Chun H, Kim K. Rigid and flexible: a highly porous metal–organic framework with unusual guest-dependent dynamic behavior. Angew Chem Int Ed. 2004;43:5033–6.CrossRefGoogle Scholar
  14. 14.
  15. 15.
    Moukhina E. Determination of kinetic mechanisms for reactions measured with thermoanalytical instruments. J Therm Anal Calorim. 2012;109:1203–14.CrossRefGoogle Scholar
  16. 16.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  17. 17.
    Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. J Polym Sci. 1963;6:183–95.Google Scholar
  18. 18.
    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Japan. 1965;38:1881–6.CrossRefGoogle Scholar
  19. 19.
    Ozawa T. Estimation of activation energy by isoconversion methods. Thermochim Acta. 1992;203:159–65.CrossRefGoogle Scholar
  20. 20.
    Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Nat Bur Stand. 1966;70:478–523.Google Scholar
  21. 21.
    Opfermann J, Kaisersberger E. An advantageous variant of the Ozawa-Flynn-Wall analysis. Thermochim Acta. 1992;203:167–75.CrossRefGoogle Scholar
  22. 22.
    Opfermann JR, Kaisersberger E, Flammersheim HJ. Model-free analysis of thermo-analytical data-advantages and limitations. Thermochim Acta. 2002;391:119–27.CrossRefGoogle Scholar
  23. 23.
    Vyazovkin S. Model-free kinetics: staying free of multiplying entities without necessity. J Therm Anal Calorim. 2006;83:45–51.CrossRefGoogle Scholar
  24. 24.
    Simon P. Single-step kinetics approximation employing nonarrhenius temperature functions. J Therm Anal Calorim. 2005;79:703–8.CrossRefGoogle Scholar
  25. 25.
    Simon P. The single-step approximation: attributes, strong and weak sides. J Therm Anal Calorim. 2007;88:709–15.CrossRefGoogle Scholar
  26. 26.
    Borchard HJ, Daniels F. The application of differential thermal analysis to the study of reaction kinetics. J Amer Chem Soc. 1957;79:41–6.CrossRefGoogle Scholar
  27. 27.
    Vyazovkin S, Burnham AK, Criado JM, Luis A, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.CrossRefGoogle Scholar
  28. 28.
    Vyazovkin S, Chrissafis K, Di Lorenzo M-R, Koga N, Pijolat M, Roduit B, Sbirrazzuoli N, Suñol J-J. ICTAC kinetics committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23.CrossRefGoogle Scholar
  29. 29.
    Simon P, Thomas P, Dubaj T, Cibulkova Z, Peller A, Veverka M. The mathematical incorrectness of the integral isoconversional methods in case of variable activation energy and the consequences. J Therm Anal Calorim. 2014;115:853–9.CrossRefGoogle Scholar
  30. 30.
    Sestak J. Is the original kissinger equation obsolete today: not obsolete the entire non-isothermal kinetics? J Therm Anal Calorim. 2014;117:3–7.CrossRefGoogle Scholar
  31. 31.
    Logvinenko V, Fedorov V, Mironov Yu, Drebushchak V. Kinetic and thermodynamic stability of cluster compounds under heating. J Therm Anal. 2007;88:687–92.CrossRefGoogle Scholar
  32. 32.
    Logvinenko V. Stability and reactivity of coordination and inclusion compounds in the reversible processes of thermal dissociation. Thermochim Acta. 1999;340:293–9.CrossRefGoogle Scholar
  33. 33.
    Logvinenko V. Solid state coordination chemistry. The quantitative thermoanalytical study of thermal dissociation reactions. J Therm Anal Calorim. 2000;60:9–15.CrossRefGoogle Scholar
  34. 34.
    Logvinenko V. Stability of supramolecular compounds under heating. Thermodynamic and kinetic aspects. J Therm Anal Calorim. 2010;101:577–83.CrossRefGoogle Scholar
  35. 35.
    Logvinenko V, Drebushchak V, Pinakov D, Chekhova G. Thermodynamic and kinetic stability of inclusion compounds under heating. J Therm Anal. 2007;90:23–30.CrossRefGoogle Scholar
  36. 36.
    Pinakov DV, Logvinenko VA, Chekhova GN, Shubin YuV. The relationship between properties of fluorinated graphite intercalates and matrix composition. Part VI. J Therm Anal Calorim. 2014;115:503–9.CrossRefGoogle Scholar
  37. 37.
    Logvinenko VA, Belyaev AV, Vorob’eva SN. Dehydration process of rhodium sulfate crystalline hydrate. J Therm Anal Calorim. 2013;114:1177–81.CrossRefGoogle Scholar
  38. 38.
    Ukraintseva EA, Sapchenko SA, Ivanov IM, Samsonenko DG, Dybtsev DN, Manakov AY, Fedin VP. Benzene sorption by a microporous coordination polymer based on a zinc carboxilate. Rus J Inorg Chem. 2012;57:717–21.CrossRefGoogle Scholar
  39. 39.
    Hauptmann S, Graefe J, Remane H. Lehrbuch der organischen Chemie. Leipzig: VEB Deutscher Verlag fur Grundstoffindustrie; 1976.Google Scholar
  40. 40.
    Poling BE, Prausnitz JM, O’Connell JP. The Properties of Gases and Liquids. New York: McGraw-Hill; 2001.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Vladimir A. Logvinenko
    • 1
    • 2
  • Danil N. Dybtsev
    • 1
    • 2
  • Vsevolod A. Bolotov
    • 1
  • Vladimir P. Fedin
    • 1
    • 2
  1. 1.Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations