Skip to main content
Log in

Synthesis, characterization and thermoreactivity of some methylcellulose–zinc composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Two methylcellulose–ZnO and one methylcellulose–Zn2+ composites were obtained by precipitation and hydrothermal procedures. The thermal behavior of the composites was examined by simultaneous TG, DTG, DSC-FTIR thermal method. It was found that the thermal reactivity of the methylcellulose contained by the composites is strongly dependent on the composites’ synthetic procedure, but in all cases its stability is shifted toward lower temperatures. For each type of composites, the causes that lead to a change of methylcellulose thermoreactivity were highlighted. The structural, morphological and optical characteristics of the ZnO-based materials are also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sohn LL. Nanotechnology: a quantum leap for electronics. Nature. 1998;394:131–2.

    Article  CAS  Google Scholar 

  2. Alivisatos AP. Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem. 1996;100(31):13226–39.

    Article  CAS  Google Scholar 

  3. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science. 1998;281(5385):2013–6.

    Article  CAS  Google Scholar 

  4. Sharma VK, Yngard RA, Lin Y. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci. 2009;145(1–2):83–96.

    Article  CAS  Google Scholar 

  5. Anastas P, Warner J. Green chemistry: theory and practice. New York: Oxford University Press; 1998.

    Google Scholar 

  6. Visinescu D, Patrinoiu G, Tirsoaga A, Carp O. Polysaccharides Routes: a new green strategy for metal oxides synthesis. In: Lichtfouse E, Schwarbauer J, Roberts D, editors. Environmental chemistry for a sustainable world. Berlin: Springer; 2013. p. 119–72.

    Google Scholar 

  7. Sahoo GP, Bhui DK, Bar H, Sarkar P, Samanta S, Pyne S, Misra A. Synthesis and characterization of gold nanoparticles adsorbed in methyl cellulose micro fibrils. J Mol Liq. 2010;155(2–3):91–5.

    Article  CAS  Google Scholar 

  8. Bhui DK, Pyne S, Sarkar P, Bar H, Sahoo GP, Misra A. Temperature controlled synthesis of silver nanostructures of variable morphologies in aqueous methyl cellulose matrix. J Mol Liq. 2011;158(3):170–4.

    Article  CAS  Google Scholar 

  9. Bhui DK, Misra A. Synthesis of worm like silver nanoparticles in methyl cellulose polymeric matrix and its catalytic activity. Carbohydr Polym. 2012;89(3):830–5.

    Article  CAS  Google Scholar 

  10. Rimdusit S, Jingjid S, Damrongsakkul S, Tiptipakorn S, Takeichi T. Biodegradability and property characterizations of methyl cellulose: effect of nanocompositing and chemical crosslinking. Carbohydr Polym. 2008;72(3):444–55.

    Article  CAS  Google Scholar 

  11. Rangelova N, Radev L, Nenkova S, Salvado IMM, Vas Fernandes MH, Herzog M. Methylcellulose/SiO2 hybrids: sol-gel preparation and characterization by XRD, FTIR and AFM. Cent Eur J Chem. 2011;9(1):112–8.

    Article  CAS  Google Scholar 

  12. Zhong L, Zhang Y, Chen F, Zhang Y. Synthesis of mesoporous alumina using a recyclable methylcellulose template. Microporous Mesoporous Mater. 2011;142(2–3):740–4.

    Article  CAS  Google Scholar 

  13. Yoon DJ, Kim YD. Electrorheological properties of polypyrrole–SnO2–methylcellulose nanocomposite suspensions. J Mater Sci. 2007;42(14):5534–8.

    Article  CAS  Google Scholar 

  14. Xia YN, Yang PD, Sun YG, Wu YY, Mayers B, Gates B, Yin YD, Kim F, Yan HQ. One-dimensional nanostructures: synthesis, characterization and applications. Adv Mater. 2003;15(5):353–89.

    Article  CAS  Google Scholar 

  15. Carp O, Tirsoaga A, Jurca B, Ene R, Somacescu S, Ianculescu A. Biopolymer starch mediated synthetic route of multi-spheres and donut ZnO structures. Carbohydr Polym. 2015;115(22):285–93.

    Article  CAS  Google Scholar 

  16. Chang PR, Yu J, Ma X. Preparation of porous starch and its use as a structure-directing agent for production of porous zinc oxide. Carbohydr Polym. 2011;83(2):1016–9.

    Article  CAS  Google Scholar 

  17. Taubert A, Wegner G. Formation of uniform and monodisperse zincite crystals in the presence of soluble starch. J Mater Chem. 2002;12(4):805–7.

    Article  CAS  Google Scholar 

  18. Zhang G, Shen X, Yang Y. Facile synthesis of monodisperse porous ZnO spheres by a soluble starch-assisted method and their photocatalytic activity. J Phys Chem C. 2011;115(15):7145–52.

    Article  CAS  Google Scholar 

  19. Fu LH, Dong YY, Ma MG, Li SM, Sun SL, Sun RC. Zn5(OH)8Cl2·H2O sheets formed using cellulose as matrix via microwave-assisted method and its transformation to ZnO. Mater Lett. 2013;92:136–8.

    Article  CAS  Google Scholar 

  20. Kamalasanan MN, Chandra S. Sol-gel synthesis of ZnO thin films. Thin Solid Films. 1996;288(1–2):112–5.

    Article  CAS  Google Scholar 

  21. Bobowska I, Wojciechowski P, Halamus T. Organic–inorganic nanocomposites of (2 hydroxypropyl) cellulose as a precursor of nanocrystalline zinc oxide layers. Polym Adv Technol. 2008;19(12):1860–7.

    Article  CAS  Google Scholar 

  22. Gao S, Zhang H, Wang X, Deng R, Sun D, Zheng G. ZnO-based hollow microspheres: biopolymer-assisted assemblies from ZnO nanorods. J Phys Chem B. 2006;110(32):15847–52.

    Article  CAS  Google Scholar 

  23. Baskoutas S, Giabouranis P, Yannopoulos SN, Dracopoulos V. Preparation of ZnO nanoparticles by thermal decomposition of zinc alginate. Thin Solid Films. 2007;515(24):8461–4.

    Article  CAS  Google Scholar 

  24. Trandafilović LV, Božanić DK, Dimitrijević-Branković S, Luyt AS, Djoković V. Fabrication and antibacterial properties of ZnO–alginate nanocomposites. Carbohydr Polym. 2012;88(1):263–9.

    Article  Google Scholar 

  25. Li Y, Wu K, Zhitomirsky I. Electrodeposition of composite zinc oxide–chitosan films. Colloids Surf A Physicochem Eng Asp. 2010;356(1–3):63–70.

    Article  CAS  Google Scholar 

  26. Kawano T, Imai H. Characteristically shaped ZnO particles produced by periodic precipitation in organic gel media. J Cryst Growth. 2005;283:490–9.

    Article  CAS  Google Scholar 

  27. Hirrien M, Chevillard C, Desbrieres J, Axelos MAV, Rinaudo M. Thermogelation of methylcellulose: new evidence for understanding the gelation mechanism. Polymer. 1998;39(25):6251–9.

    Article  CAS  Google Scholar 

  28. Sekiguchi Y, Sawatari C, Kondo T. A gelation mechanism depending on hydrogen bond formation in regioselectively substituted O-methylcelluloses. Carbohydr Polym. 2003;53(2):145–53.

    Article  CAS  Google Scholar 

  29. Villetti MA, Crespo JS, Soldi MS, Pires ATN, Borsali R, Soldi V. Thermal degradation of natural polymers. J Therm Anal Calorim. 2002;67:295–303.

    Article  CAS  Google Scholar 

  30. Zohuriaan MJ, Shokrolahi F. Material characterization thermal studies on natural and modified gums. Polym Test. 2004;24:575–9.

    Article  Google Scholar 

  31. Singh RK. Methylcellulose synthesis from corn cobs, study of the effect of solvent conditions on product properties by thermal analysis. J Therm Anal Calorim. 2013;114:809–19.

    Article  CAS  Google Scholar 

  32. Rodrigues Filho G, Assunção RMN, Vieira JG, Meireles CS, Cerqueira DA, Barud HS, Ribeiro JLR, Messaddeq Y. Characterization of methylcellulose produced from sugar cane bagasse cellulose: crystallinity and thermal properties. Polym Degrad Stab. 2007;92(2):205–10.

    Article  CAS  Google Scholar 

  33. Habibi MH, Nasr-Esfahani M, Egerton TA. Preparation, characterization and photocatalytic activity of TiO2/Methylcellulose nanocomposite films derived from nanopowder TiO2 and modified sol-gel titania. J Mater Sci. 2007;42(15):6027–35.

    Article  CAS  Google Scholar 

  34. Ping ZH, Nguyen QT, Chen SM, Zhou JQ, Ding YD. State of water in different hydrophilic polymers—DSC and FTIR studies. Polymer. 2001;42(20):8461–7.

    Article  CAS  Google Scholar 

  35. Velazquez G, Herrera-Gómez A, Martín-Polo MO. Identification of bound water through infrared spectroscopy in methylcellulose. J Food Eng. 2003;59:79–84.

    Article  Google Scholar 

  36. Cao Y, Tan H. Effects of cellulase on the modification of cellulose. Carbohydr Res. 2002;337(14):1291–6.

    Article  CAS  Google Scholar 

  37. Kondo T, Sawatari C. A Fourier transform infra-red spectroscopic analysis of the character of hydrogen bonds in amorphous cellulose. Polymer. 1996;37(3):393–9.

    Article  CAS  Google Scholar 

  38. Viera RGP, Rodrigues Filho G, Assunção RMN, Meireles CS, Vieira JG, Oliveira GS. Synthesis and characterization of methylcellulose from sugar cane bagasse cellulose. Carbohydr Polym. 2007;67(2):182–9.

    Article  CAS  Google Scholar 

  39. Lin SY, Wang SL, Wei YS, Li MJ. Temperature effect on water desorption from methylcellulose films studied by thermal FT-IR microspectroscopy. Surf Sci. 2007;601(3):781–5.

    Article  CAS  Google Scholar 

  40. Zhbankov RG. Infrared spectra of cellulose and its derivatives. New York: Plenum Publishing Corporation; 1966.

    Google Scholar 

  41. Kumar A, Negi YS, Bhardwaj NK, Choudhary V. Synthesis and characterization of methylcellulose/PVA based porous composite. Carbohydr Polym. 2012;88(4):1364–72.

    Article  CAS  Google Scholar 

  42. Jitianu M, Goia DV. Zinc oxide colloids with controlled size, shape, and structure. J Colloid Interface Sci. 2007;309(1):78–85.

    Article  CAS  Google Scholar 

  43. Zheng Y, Chen C, Zhan Y, Lin X, Zheng Q, Wei K, Zhu J, Zhu Y. Luminescence and photocatalytic activity of ZnO nanocrystals: correlation between structure and property. Inorg Chem. 2007;46:6675–82.

    Article  CAS  Google Scholar 

  44. Baueramann LP, Bill J, Aldinger F. Bio-friendly synthesis of ZnO nanoparticles in aqueous solution at near-neutral pH and low temperature. J Phys Chem B. 2006;110(11):5182–5.

    Article  Google Scholar 

  45. Bellamy LJ. The infrared spectra of complex molecules. 2nd ed. London: Chapman and Hall; 1980.

    Book  Google Scholar 

  46. Park JS, Ruckenstein E. Viscoelastic properties of plasticized methylcellulose and chemically crosslinked methylcellulose. Carbohydr Polym. 2001;46:373–81.

    Article  CAS  Google Scholar 

  47. Gómez-Carracedo A, Alvarez-Lorenzo C, Gómez-Amoza JL, Concheiro A. Chemical structure and glass transition temperature of non-ionic cellulose ethers. DSC, TMDSC, oscillatory rheometry study. J Therm Anal Calorim. 2003;73:587–96.

    Article  Google Scholar 

  48. Oliveira GS, Rodrigues Filho G, Vieira JG, Assunção RMN, Meireles CS, Cerqueira DA. Synthesis and application of methylcellulose extracted from waste newspaper in CPV-ARI Portland cement mortars. J Appl Polym Sci. 2010;118:1380–5.

    CAS  Google Scholar 

  49. Kararli TT, Hurbult JB, Needham TE. Glass-rubber transitions of cellulosic polymers by dynamic mechanical analysis. J Pharm Sci. 1990;79(9):845–8.

    Article  CAS  Google Scholar 

  50. Jia B, Hino T, Kuramoto N. Synthesis and chiroptical properties of water-processable polyaniline using methylcellulose as a molecular template. React Funct Polym. 2007;67(9):836–43.

    Article  CAS  Google Scholar 

  51. Alves TVG, Tavares EJM, Aouada FA, Negrão CAB, Oliveira MEC, Duarte AP Jr, Ferreira da Costa CE, Carréra Silva JO Jr, Costa RMR. Thermal analysis characterization of PAAm-co-MC hydrogels. J Therm Anal Calorim. 2011;106(3):717–24.

    Article  CAS  Google Scholar 

  52. Kaloustian J, Pauli AM, Pastor J. Analyse thermique de la cellulose et de quelques derives etherifies et esterifies. J Therm Anal Calorim. 1997;48(4):791–804.

    Article  CAS  Google Scholar 

  53. Chang PR, Yu J, Ma X, Anderson DP. Polysaccharides as stabilizers for the synthesis of magnetic nanoparticles. Carbohydr Polym. 2011;83:640–4.

    Article  CAS  Google Scholar 

  54. Somsook E, Hinsin D, Buakhrong P, Teanchai R, Mophan N, Pohmakotr M, Shiowatana J. Interactions between iron(III) and sucrose, dextran, or starch in complexes. Carbohydr Polym. 2005;61:281–7.

    Article  CAS  Google Scholar 

  55. Liu YX, Liu YC, Shao CL, Mu R. Excitonic properties of ZnO nanocrystalline films prepared by oxidation of zinc-implanted silica. J Phys D Appl Phys. 2004;37(21):3025–9.

    Article  CAS  Google Scholar 

  56. Zheng Y, Chen C, Zhan Y, Lin X, Zheng Q, Wei K, Zhu Y, Zhu Y. Luminescence and photocatalytic activity of ZnO nanocrystals: correlation between structure and property. Inorg Chem. 2007;46:6675–82.

    Article  CAS  Google Scholar 

  57. Greene LE, Law M, Goldberger J, Kim F, Johnson JC, Zhang Y, Saykally RJ, Yang PD. Low-temperature wafer-scale production of ZnO nanowire arrays. Angew Chem Int Ed. 2003;42:3031–4.

    Article  CAS  Google Scholar 

  58. Dijken VA, Meulenkamp E, Vanmaekelbergh D, Meijerink A. The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation. J Phys Chem B. 2000;104:1715–23.

    Article  Google Scholar 

  59. Djurišić AB, Leung YH. Optical properties of ZnO nanostructures. Small. 2006;2(8–9):944–61.

    Google Scholar 

  60. Pal U, Santiago P. Controlling the morphology of ZnO nanostructures in a low-temperature hydrothermal process. J Phys Chem B. 2005;109:15317–21.

    Article  CAS  Google Scholar 

  61. Huang MH, Mao S, Feick H, Yan HQ, Wu YY, Kind H, Weber E, Russo R, Yang PD. Room-temperature ultraviolet nanowire nanolasers. Science. 2001;292:1897–9.

    Article  CAS  Google Scholar 

  62. Zeng H, Duan G, Li Y, Yang S, Xu X, Cai W. Blue luminescence of ZnO Nanoparticles based on non-equilibrium processes: detect origins and emission controls. Adv Funct Mater. 2010;20(4):561–72.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, Project Number PN-II-ID-PCE-2011-3-0473. The paper was done within the “Green chemistry” research program of the “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy. Support of the EU (ERDF) and Romanian Government that allowed for acquisition of the research infrastructure under POS-CCE O 2.2.1 project INFRANANOCHEM - Nr. 19/01.03.2009 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oana Carp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musuc, A.M., Dumitru, R., Stan, A. et al. Synthesis, characterization and thermoreactivity of some methylcellulose–zinc composites. J Therm Anal Calorim 120, 85–94 (2015). https://doi.org/10.1007/s10973-015-4415-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4415-5

Keywords

Navigation