Journal of Thermal Analysis and Calorimetry

, Volume 120, Issue 1, pp 175–181 | Cite as

Ehrenfest equations for calorimetry and dilatometry

  • Pavel Holba


Ehrenfest classification of phase transitions discerns between two categories: first-order transitions obeying Clapeyron equation and second-order transitions that should obey Ehrenfest equations. Considering the equilibrium phase diagram of binary systems with lentiform two-phase field and with bell-shaped miscibility gap, the corresponding Ehrenfest equations applicable for calorimetry and dilatometry are derived.


Thermal analysis Equilibrium advancement of process Enantiotropic processes Gradual transition Second-order phase transition Ehrenfest equations Miscibility gap 



The result was developed within the CENTEM project, Reg. No. CZ.1.05/2.1.00/03.0088, co-funded by the ERDF as part of the Ministry of Education, Youth and Sports OP RDI programme.


  1. 1.
    Berthelot M. Essai de Mecanique Chimique fondee sur la Thermochimie, vol. 2. Paris: Dunod; 1879.Google Scholar
  2. 2.
    Lehmann O. Molekularphysik, vol. 2. Leipzig: Engelmann; 1888. p. 398–415.Google Scholar
  3. 3.
    Ehrenfest P, Phasenumwandlungen im üblichen und erweiterten Sinn, classifiziert nach dem entsprechen-den Singularitäten des thermodynamischen Potentiales.” Verhandlingen der Koninklijke Akademie van Wetenschappen Amsterdam 1933;36: 153–157; Communications from the Physical Laboratory of the University of Leiden, Supplement No. 75b (1933).Google Scholar
  4. 4.
    Keesom WH, de Haas WJ, Die Umwandlung flüssiges Helium I-Helium II unter Druck. Verhandlingen der Koninklijke Akademie van Wetenschappen Amsterdam 1932;34:605; Communications from the Physical Laboratory of the University of Leiden, Communication No. 216b (1932).Google Scholar
  5. 5.
    Clapeyron E, Puissance motrice de la chaleur, Journal de l’École Royale Polytechnique, Vingt-troisième cahier, 1834;Tome XIV:153–190.Google Scholar
  6. 6.
    Clausius R, Über die bewegende Kraft der Wärme und die Gesetze, welche sich daraus für die Wärmelehre selbst ableiten lassen. Pogg Ann (Annalen der Physik) 1850;79: 368–397 + 500–524 (p. 372).Google Scholar
  7. 7.
    L’Hospital G de, L’analyse des infiniment petits pour l’intelligence des lignes courbes. 1696.Google Scholar
  8. 8.
    Maxwell JC. Theory of heat. London: Longmans, Green, and Co; 1871. p. 165–8.Google Scholar
  9. 9.
    Rutgers AJ. Note on supraconductivity I. Physica. 1934;2:1055–8.CrossRefGoogle Scholar
  10. 10.
    Landau LD. On the theory of phase transitions. Zh Eksp Teor Fiz. 1937;7:19–32.Google Scholar
  11. 11.
    Onsager L. Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys Rev. 1944;65:117–49.CrossRefGoogle Scholar
  12. 12.
    Tisza L. On the general theory of phase transitions. In: Smoluchowski R, et al., editors. Phase transitions in solids (Symposium at Cornell University, August, 1948). New York: Wiley; 1951. p. 1–37.Google Scholar
  13. 13.
    Callen HB. Thermodynamics. New York: Wiley; 1960.Google Scholar
  14. 14.
    Tisza L. The thermodynamics of phase equilibrium. Ann Phys. 1961;13:1–92.CrossRefGoogle Scholar
  15. 15.
    Pippard AB. Elements of classical thermodynamics. Cambridge: Cambridge University Press; 1957.Google Scholar
  16. 16.
    Jaeger G. The Ehrenfest classification of phase transitions: introduction and evolution. Arch Hist Exact Sci. 1998;53:51–81.CrossRefGoogle Scholar
  17. 17.
    The Great Soviet Encyclopedia 1979. Accessed 15 Sept 2013;книги/БCЭ/Фaзoвыйпepexoд/. Accessed 3 Nov 2014.
  18. 18.
    Matolcsi T. On the classification of phase transitions. Z Angew Math Phys. 1996;47:837–57.CrossRefGoogle Scholar
  19. 19.
    Holba P, Equilibrium background of gradual transitions and Ehrenfest equations in binary system. Book of contributions (4th Joint Czech-Hungarian-Polish-Slovak Thermoanalytical conference. Pardubice 24–27. June 2013) pp.56–59. ISBN 978-80-7395-603-5.Google Scholar
  20. 20.
    Holba P, Equilibrium background of processes initiated by heating, Ehrenfest classification of phase transitions and its applicability on thermal analysis. Abstracts of XIV International Conference on Thermal Analysis and Calorimetry in Russia (RTAC-2013) 23–28 September, 2013, Saint-Petersburg, Russia. St-Petersburg State Polytechnical University, 2013. p. 6.Google Scholar
  21. 21.
    Holba P, Ehrenfestovy rovnice a termická analýza. In: Proceedings of 36th KALSEM (International Slovak and Czech Calorimetric Seminary, Trenčianské Teplice, Slovakia, May 26-30th 2014) pp. 19-22, Univerzita Pardubice 2014, ISBN 978-80-7395-784-1 (in Czech).Google Scholar
  22. 22.
    Holba P, Šesták J, Kinetics with Regard to the Equilibrium of Processes Studied by Non-Isothermal Techniques, Zeit. physik. Chem. 1972;N.F.80 [1/2]:1–20.Google Scholar
  23. 23.
    Holba P. Equilibrium background of processes initiated by heating and Ehrenfest’s classification of phase transitions. In: Šesták J, Šimon P, editors. Thermal Analysis of Micro. Springer, Heidelberg: Nano- and Non-Crystalline Materials; 2003. p. 29–52.Google Scholar
  24. 24.
    Hillert M. Phase equilibria, phase diagrams and phase transformation. Their thermodynamic basis. Cambridge: Cambridge University Press; 1998.Google Scholar
  25. 25.
    Rycerz L. Practical remarks concerning phase diagrams determination on the basis of DSC measurement. J Therm Anal Calorim. 2013;113:231–8.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  1. 1.New Technology – Research Centre (NTC)University of West BohemiaPlzeňCzech Republic

Personalised recommendations