Skip to main content
Log in

Precision thermogravimetry

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Use your head! What counts, it is those little details (Cavendish).

Abstract

Sources of inaccuracies in thermogravimetry and the ways of minimizing them are described. The disturbances related to buoyancy forces and disturbances caused by drag forces from local gas circulations have been studied and interpreted. Procedures leading to parts-per-million precision have been tested and proven. Recommendations for handling corrosive gases, contaminating fumes or smoke, and vapors in TGs are provided. The influence of heating rate on the accuracy of TG determination of decomposition temperature, particularly with reference to controlled rate thermal analysis (CRTA), is discussed. Differences in the degree of straightforwardness of the temperature-related data produced by CRTA methods (dynamic heating rate, stepwise isothermal) are discussed. Ways of plotting TG data, including the controversy over blank-run subtraction, and questioning plotting mass versus temperature alone, are discussed. The unsatisfactory accuracy of determination of decomposition temperature for gas-producing reversible processes is analyzed, and a remedy is proposed. A way of linking thermoanalytical data to industrial production of lime is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Czarnecki J. Comparison of various configurations of TG instruments from the viewpoint of reliability of the results. http://sites.google.com/site/solutionsforthermogravimetry/Home (2014). Accessed 15 Dec 2014.

  2. Czarnecki J, Koga N, Sestakova V, Sestak J. Factors affecting the experimentally resolved shapes of TG curves. J Therm Anal. 1992;38:575.

    Article  CAS  Google Scholar 

  3. Czarnecki J, Sestak J. Practical thermogravimetry. J Therm Anal Calorim. 2000;60:759–78.

    Article  CAS  Google Scholar 

  4. Czarnecki J. Practical thermogravimetry In: Ostrava seminar on thermal analysis 2009, Ostrava. http://sites.google.com/site/solutionsforthermogravimetry/Home (2009). Accessed 15 Dec 2014.

  5. Czarnecki J. Vapor generation and thermogravimetry in vapors. 2014. http://sites.google.com/site/solutionsforthermogravimetry/Home. Accessed 15 Dec 2014.

  6. Czanderna AW, Wolsky SP. Microweighing in vacuum and controlled environment. Amsterdam: Elsevier; 1980. ISBN:0-444-868-7.

  7. Kemula W, Czarnecki J. Kinetics of heterogeneous thermal decomposition with special reference to the complex Ni(NCS)2(gamma-picoline)4. Pol J Chem. 1978;52:613.

    CAS  Google Scholar 

  8. Paulik F, Paulik J. Quasi-isothermal thermogravimetry, thermal analysis, vol. 1. In: Proceedings 3rd ICTA. 1971. p. 161.

  9. Šesták J, Holba P, Živkovič Ž. Doubts on Kissinger’s method of kinetic evaluation based on several conceptual models showing the difference between the maximum of reaction rate and the extreme of a DTA. J Min Metall B. 2014;50:77–81.

    Article  Google Scholar 

  10. Paulik F, Paulik J. Kinetic studies of thermal decomposition reactions under quasi-isothermal and quasi-isobaric conditions by means of the derivatograph. Anal Chim Acta. 1971;56:328.

    Article  CAS  Google Scholar 

  11. Rouquerol J. Method d’analyse thermique sous faible pression et a vitesse de composition constante. Memoires Presentees a la Societe Chimique. 1963.

  12. Ortega A. Isoconversional method in controlled rate TA. Thermochim Acta. 1997;298(1–2):1.

    Google Scholar 

  13. Málek J, Šesták J, Rouquerol F, Rouquerol J, Criado JM. Ortega a possibilities of two non-isothermal procedures (temperature- or rate-controlled) for kinetic studies. J Thermal Anal. 1992;38:71–87.

    Article  Google Scholar 

  14. Šesták J. Science of heat and thermophysical studies: a generalized approach to thermal analysis. Amsterdam: Elsevier; 2005. ISBN:0-444-51954-8.

  15. Šesták J. Is the original Kissinger equation obsolete today: not obsolete the entire non-isothermal kinetics? J Therm Anal Calorim. 2014;117:3–7.

    Article  Google Scholar 

  16. Koga N, Sesták J, Simon P. Some fundamental and historical aspects of phenomenological kinetics in solid-state studied by thermal analysis. In: Sesták J, Simon P, editors. Thermal analysis of micro-, nano- and non-crystalline materials. Berlin: Springer; 2013. p. 1–45. ISBN:978-90-481-3149-5.

  17. Sauerbrunn S, Gill P. Decomposition kinetics using TGA, TA instruments, Brochure TA-075. p. 3 http://www.tainstruments.co.jp/application/pdf/Thermal_Library/Applications_Briefs/TA075.PDF (2014). Accessed 15 Dec 2014.

  18. Ozawa T. Controlled rate thermogravimetry: new usefulness of controlled rate thermogravimetry revealed by decomposition of polyimide. J Therm Anal Calorim. 2000;59(1–2):375–84.

    Article  CAS  Google Scholar 

  19. TA Instruments’ video: superior TGA design. 2014. http://www.youtube.com/watch?v=E6GzH8GFv5E&feature=plcp. Accessed 15 Dec 2014.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry Czarnecki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czarnecki, J. Precision thermogravimetry. J Therm Anal Calorim 120, 139–147 (2015). https://doi.org/10.1007/s10973-014-4384-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4384-0

Keywords

Navigation