Journal of Thermal Analysis and Calorimetry

, Volume 120, Issue 2, pp 1249–1259 | Cite as

Vogel–Fulcher analysis of relaxor dielectrics with the tetragonal tungsten bronze structure: Ba6MNb9O30 (M = Ga, Sc, In)

  • Andrei Rotaru
  • Finlay D. Morrison


In-depth analysis of the relaxor behaviour of Ba6MNb9O30 (M = Ga, Sc, In) tetragonal tungsten bronze (TTB) ceramics was carried out. Powder X-ray diffraction and scanning electron microscopy were performed in order to confirm the formation of desired phases and to determine the microstructure. Low-temperature dielectric spectroscopy was used in order to characterise the dielectric properties of these materials; the degree of relaxor behaviour was investigated in relation with the increase of ionic radius of the M cation on the B-site of the TTB structure. The dynamics of dielectric relaxation of dipoles was studied by fitting the dielectric permittivity data to the Vogel–Fulcher (VF) model in order to monitor the reproducibility and validity of the physical results. Restrictions to the VF fit were attempted besides the regular “free-fit” by constraining some of the fundamental relaxation parameters to physically sensible values. We show that VF fits are very sensitive to the fitting range resulting in a large range of fundamental parameters for the dielectric relaxation processes, and that the restriction of the frequency domain due to experimental noise or instrumentation limits has a dramatic influence on the values obtained.


Canonical relaxors Low-temperature dielectric spectroscopy Dipolar relaxation Electroceramics Tetragonal tungsten bronzes Vogel–Fulcher model 



Andrei Rotaru would like to acknowledge the support of "Burse Universitare în România prin Sprijin European pentru Doctoranzi şi Post-doctoranzi (BURSE DOC-POSDOC)”/“University Fellowships in Romania by European Support for PhD students and PostDocs (DOC-POSDOC FELLOWSHIPS)”, ID CONTRACT POSDRU/159/1.5/S/133255.


  1. 1.
    Shrout TR, Zhang SJ. Lead-free piezoelectric ceramics: alternatives for PZT? J Electroceramics. 2007;19:111–24.CrossRefGoogle Scholar
  2. 2.
    Catalan G, Scott JF. Physics and applications of bismuth ferrite. Adv Mater. 2009;21:1–2463–1–2485.CrossRefGoogle Scholar
  3. 3.
    Spaldin NA, Fiebig M. The renaissance of magnetoelectric multiferroics. Science. 2005;309:391–2.CrossRefGoogle Scholar
  4. 4.
    Eerenstein W, Mathur ND, Scott JF. Multiferroic and magnetoelectric materials. Nature. 2006;442:759–65.CrossRefGoogle Scholar
  5. 5.
    Bokov AA, Ye Z-G. Recent progress in relaxor ferroelectrics with perovskite structure. J Mater Sci. 2006;41:31–52.CrossRefGoogle Scholar
  6. 6.
    Smolenskii GA, Yudin VM, Sher ES, Stolypin YE. Antiferromagnetic properties of some perovskite. Sov Phys JETP. 1963;16:622–4.Google Scholar
  7. 7.
    Sugawara F, Iida S, Syono Y, Akimoto S. Magnetic properties and crystal distortions of BiMnO3 and BiCrO3. J Phys Soc Jpn. 1968;25:1553–8.CrossRefGoogle Scholar
  8. 8.
    Chiba H, Atou T, Syono Y. Magnetic and electrical properties of Bi1−xSrxMnO3: hole-doping effect on ferromagnetic perovskite BiMnO3. J Solid State Chem. 1997;132:139–43.CrossRefGoogle Scholar
  9. 9.
    Kimura T, Goto T, Shintani U, Ishizaka K, Arima T, Tokura T. Magnetic control of ferroelectric polarisation. Nature. 2003;426:55–8.CrossRefGoogle Scholar
  10. 10.
    Lottermoser T, Lonkai T, Amann U, Hohlwein D, Ihringer J, Fiebig M. Magnetic phase control by an electric field. Nature. 2004;430:541–4.CrossRefGoogle Scholar
  11. 11.
    Miller AJ (2010) Undergraduate research project. University of St Andrews.Google Scholar
  12. 12.
    Arnold DC, Morrison FD. B-cation effects in relaxor and ferroelectric tetragonal tungsten bronzes. J Mater Chem. 2009;19:6485–8.CrossRefGoogle Scholar
  13. 13.
    Simon A, Ravez J. Solid-state chemistry and non-linear properties of tetragonal tungsten bronzes materials. C R Chim. 2006;9:1268–76.CrossRefGoogle Scholar
  14. 14.
    Wang DH, Goh WC, Ning M, Ong CK. Effect of Ba doping on magnetic, ferroelectric, and magnetoelectric properties in mutiferroic BiFeO3 at room temperature. Appl Phys Lett. 2006;88:212907.CrossRefGoogle Scholar
  15. 15.
    Yuan GL, Or SW. Structural transformation and ferroelectromagnetic behavior in single-phase Bi1−xNdxFeO3 multiferroic ceramics. Appl Phys Lett. 2006;88:062905.CrossRefGoogle Scholar
  16. 16.
    Wang C, Takahashi M, Fujino M, Zhao X, Kume E, Horiuchi T, Sakai S. Leakage current of multiferroic (Bi0.6Tb0.3La0.1)FeO3 thin films grown at various oxygen pressures by pulsed laser deposition and annealing effect. J Appl Phys. 2006;99:054104.CrossRefGoogle Scholar
  17. 17.
    Chung C-F, Lin JP, Wu J-M. Influence of Mn and Nb dopants on electric properties of chemical-solution-deposited BiFeO3 films. Appl Phys Lett. 2006;88:242909.CrossRefGoogle Scholar
  18. 18.
    Kim JK, Kim SS, Kim W-J, Bhalla AS, Guo R. Enhanced ferroelectric properties of Cr-doped BiFeO3 thin films grown by chemical solution deposition. Appl Phys Lett. 2006;88:132901.CrossRefGoogle Scholar
  19. 19.
    Stennett MC, Miles GC, Sharman J, Reaney IM, West AR. A new family of ferroelectric tetragonal tungsten bronze phases, Ba2MTi2X3O15. J Eur Ceram Soc. 2005;25:2471–5.CrossRefGoogle Scholar
  20. 20.
    Stennett MC, Reaney IM, Miles GC, Woodward DI, West AR, Kirk CA, Levin I. Dielectric and structural studies of Ba2MTi2Nb3O15 (BMTNO15, M = Bi3+, La3+, Nd3+, Sm3+, Gd3+) tetragonal tungsten bronze-structured ceramics. J Appl Phys. 2007;101:104114.CrossRefGoogle Scholar
  21. 21.
    Chen XM, Yang JS. Dielectric characteristics of ceramics in BaO–Nd2O3–TiO2–Ta2O5 system. J Eur Ceram Soc. 1999;19:139–42.CrossRefGoogle Scholar
  22. 22.
    Chen XM, Liu CL, Yang JS, Wu YJ. Some tungsten-bronze compounds in the BaO–Nd2O3–TiO2–Ta2O5 system. J Solid State Chem. 1999;148:438–41.CrossRefGoogle Scholar
  23. 23.
    Slater PR, Irvine JTS. Synthesis and electrical characterisation of the tetragonal tungsten bronze type phases, (Ba/Sr/Ca/La)0.6MxNb1−xO3−δ (M = Mg, Ni, Mn, Cr, Fe, In, Sn): evaluation as potential anode materials for solid oxide fuel cells. Solid State Ionics. 1999;124:61–72.CrossRefGoogle Scholar
  24. 24.
    Van Uitert LG, Rubin JJ, Grodkiewicz WH, Bonner WA. Some characteristics of Ba, Sr, Na niobates. Mater Res Bull. 1969;4:63–73.CrossRefGoogle Scholar
  25. 25.
    Van Uitert LG, Levinstein NJ, Rubin JJ, Capio CD, Dearborn EF, Bonner WA. Some characteristics of niobates having “filled” tetragonal tungsten bronze-like structures. Mater Res Bull. 1968;3:47–57.CrossRefGoogle Scholar
  26. 26.
    Wemple SH, DiDomenico M, Camlibel I. Relationship between linear and quadratic electro-optic coefficients in LiNbO3, LiTaO3, and other oxygen-octahedra ferroelectrics based on direct measurement of spontaneous polarization. Appl Phys Lett. 1968;12:209–11.CrossRefGoogle Scholar
  27. 27.
    Jamieson PB, Abrahams SC, Bernstein JL. Ferroelectric tungsten bronze-type crystal structures. I. Barium strontium niobate Ba0.27Sr0.75Nb2O5. J Chem Phys. 1968;48:5048–57.CrossRefGoogle Scholar
  28. 28.
    Jamieson PB, Abrahams SC, Bernstein JL. Ferroelectric tungsten bronze-type crystal structures. II. Barium sodium niobate Ba(4 + x)Na(2−2x)Nb10O30. J Chem Phys. 1969;50:4352–63.CrossRefGoogle Scholar
  29. 29.
    Cheng TS, Amzallag E, Rokni M. Ferroelectricity measurements on SrxBa1−xNb2O6. Ferroelectrics. 1972;3:57–8.CrossRefGoogle Scholar
  30. 30.
    Castel E, Josse M, Michau D, Maglione M. Flexible relaxor materials: Ba2PrxNd1−xFeNb4O15 tetragonal tungsten bronze solid solution. J Phys. 2009;21:452201.Google Scholar
  31. 31.
    Josse M, Bidault O, Roulland F, Castel E, Simon A, Michau D, Von der Muhll R, Nguyen O, Maglione M. The Ba2LnFeNb4O15 “tetragonal tungsten bronze”: towards RT composite multiferroics. Solid State Sci. 2009;11:1118–23.CrossRefGoogle Scholar
  32. 32.
    Castel E, Josse M, Roulland F, Michau D, Raison L, Maglione M. In-situ formation of barium ferrite in iron-doped “tetragonal tungsten bronze”: elaboration of room temperature multiferroic composites. J Magn Magn Mater. 2009;321:1773–7.Google Scholar
  33. 33.
    Albino M, Veber P, Pechev S, Labrugere C, Velazquez M, Maglione M, Josse M. Growth and characterization of Ba2LnFeNb4O15 (Ln = Pr, Nd, Sm, Eu) relaxor single crystals. Cryst Growth Des. 2014;14:500–12.CrossRefGoogle Scholar
  34. 34.
    Gardner J, Morrison FD. A-site size effect in a family of unfilled ferroelectric tetragonal tungsten bronzes: Ba4R0.67Nb10O30 (R = La, Nd, Sm, Gd, Dy and Y). Dalton Trans. 2014;43:11687–95.CrossRefGoogle Scholar
  35. 35.
    Fang PH, Roth RS, Johnson H. Class of nonlinear dielectric materials. J Am Ceram Soc. 1960;43:169.CrossRefGoogle Scholar
  36. 36.
    Foster MC, Brown GR, Nielson RM, Abrahams SC. Ba6CoNb9O30 and Ba6FeNb9O30: two new tungsten-bronze-type ferroelectrics. Centrosymmetry of Ba5.2K0.8U2.4Nb7.6O30 at 300 K. J Appl Crystallogr. 1997;30:495–501.CrossRefGoogle Scholar
  37. 37.
    Ismailzade I, Huseynov NG, Sultanov GJ, Hajiyev EM. Dielectric mossbauer and magnetic investigations of ferroelectric-magnetics Sr6Nb9FeO30 and Ba6Nb9FeO30. Ferroelectrics. 1976;13:389–91.CrossRefGoogle Scholar
  38. 38.
    Liu PP, Wu SY, Zhu XL, Chen XM, Liu XQ. Structure, dielectric and magnetic properties of Ba6FeNb9O30 tungsten bronze ceramics. J Mater Sci. 2011;22:866–71.Google Scholar
  39. 39.
    Damjanovic D. Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep Prog Phys. 1998;61:1267.CrossRefGoogle Scholar
  40. 40.
    Hirota K, Wakimoto S, Cox DE. Neutron and x-ray scattering studies of relaxors. J Phys Soc Jpn. 2006;75:111006.CrossRefGoogle Scholar
  41. 41.
    Cross LE. Ferroelectric ceramics: tailoring properties for specific applications. In: Setter N, Colla EL, editors. Ferroelectric ceramics. Basel: Birkhauser; 1993.Google Scholar
  42. 42.
    Rotaru A, Arnold DC, Daoud-Aladine A, Morrison FD. Origin and stability of the dipolar response in a family of tetragonal tungsten bronze relaxors. Phys Rev B. 2011;83:184302.CrossRefGoogle Scholar
  43. 43.
    Rotaru A, Miller AJ, Arnold DC, Morrison FD. Towards novel multiferroic and magnetoelectric materials: dipole stability in tetragonal tungsten bronzes. Philos Trans R Soc A. 2014;372:20120451.CrossRefGoogle Scholar
  44. 44.
    Chi EO, Gandini A, Ok KM, Zhang L, Halasyamani PS. Syntheses, structures, second-harmonic generating, and ferroelectric properties of tungsten bronzes: A6M2 M‘8O30 (A = Sr2 + , Ba2 + , or Pb2 + ; M = Ti4 + , Zr4 + , or Hf4 + ; M‘= Nb5 + or Ta5 +). Chem Mater. 2004;16:3616–22.CrossRefGoogle Scholar
  45. 45.
    Neurgaonkar RR, Nelson JG, Oliver JR. Ferroelectric properties of the tungsten bronze M6 2+M2 4+Nb8O30 solid solution systems. Mater Res Bull. 1992;27:677–84.CrossRefGoogle Scholar
  46. 46.
    Young SE, Guo HZ, Ma C, Kessler MR, Tan X. Thermal analysis of phase transitions in perovskite electroceramics. J Therm Anal Calorim. 2014;115:587–93.CrossRefGoogle Scholar
  47. 47.
    de la Rubia MA, Alonso RE, de Frutos J, Lopez-Garcia AR. Phase transitions in PbTixHf1−xO3 determined by thermal analysis and impedance spectroscopy. J Therm Anal Calorim. 2009;98:793–9.CrossRefGoogle Scholar
  48. 48.
    Runt JP, Fitzgerald JJ. Dielectric spectroscopy of polymeric materials. New York: American Chemical Society; 1997.Google Scholar
  49. 49.
    Leonardi A, Dantras E, Dandurand J, Lacabanne C. Dielectric relaxations in PEEK by combined dynamic dielectric spectroscopy and thermally stimulated current. J Therm Anal Calorim. 2013;111:807–14.CrossRefGoogle Scholar
  50. 50.
    Craig DQM. Applications of low frequency dielectric spectroscopy to the pharmaceutical sciences. Drug Develop Ind Pharm. 1992;18:1207–23.CrossRefGoogle Scholar
  51. 51.
    Johari GP, Kim S, Shanker RM. Dielectric relaxation and crystallization of ultraviscous melt and glassy states of aspirin, ibuprofen, progesterone, and quinidine. J Pharm Sci. 2007;96:1159–75.CrossRefGoogle Scholar
  52. 52.
    Vogel H. Das temperaturabhängigkeitsgesetz der viskosität von flüssigkeiten. Phys Z. 1921;22:645–6.Google Scholar
  53. 53.
    Fulcher GS. Analysis of recent measurements of the viscosity of glasses. J Am Ceram Soc. 1925;8:339–55.CrossRefGoogle Scholar
  54. 54.
    Viehland D, Jang SJ, Cross LE, Wuttig M. Freezing of the polarization fluctuations in lead magnesium niobate relaxors. J Appl Phys. 1990;68:2916–21.CrossRefGoogle Scholar
  55. 55.
    Saslow WM. Scenario for the Vogel-Fulcher”law”. Phys Rev B. 1988;37:676.CrossRefGoogle Scholar
  56. 56.
    Rietveld HM. A profile refinement method for nuclear and magnetic structures. J Appl Cryst. 1969;2:65–71.CrossRefGoogle Scholar
  57. 57.
    von Dreele RB, Larson AC. General structure analysis system (GSAS). California: University of California; 2001.Google Scholar
  58. 58.
    Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 1976;A32:751–67.CrossRefGoogle Scholar
  59. 59.
    Newnham RE. Structure-property relations in ceramic capacitors. J Mater Educ. 1983;5:947–82.Google Scholar
  60. 60.
    Fu D, Taniguchi H, Itoh M, Koshihara S, Yamamoto N, Mori S. Relaxor Pb(Mg1/3Nb2/3)O3: a ferroelectric with multiple inhomogeneities. Phys Rew Lett. 2009;103:207601.CrossRefGoogle Scholar
  61. 61.
    Badapanda T, Rout SK, Cavalcante LS, Sczancoski JC, Panigrahi S, Sinha TP, Longo E. Structural and dielectric relaxor properties of yttrium-doped Ba(Zr0.25Ti0.75)O3 ceramics. Mater Chem Phys. 2010;121:147–53.CrossRefGoogle Scholar
  62. 62.
    Cross LE, Jang SJ, Newnham RE, Nomira S, Uchino K. Large electrostrictive effects in relaxor ferroelectrics. Ferroelectrics. 1980;23:187–91.CrossRefGoogle Scholar
  63. 63.
    Kerfah A, Taibi K, Guehria-Laidoudi A, Simon A, Ravez J. Ba1−xAx(Ti0.7Zr0.3)O3 and (Ti0.7Zr0.3)O3 compositions (A = Ca, Sr; A′ = Y, La, Bi). Solid State Sci. 2006;8:613–8.CrossRefGoogle Scholar
  64. 64.
    Zhu XL, Chen XM. Thermal hysteresis of ferroelectric transition in Sr4R2Ti4Nb6O30 (R = Sm and Eu) tetragonal tungsten bronzes. Appl Phys Lett. 2010;96:032901.CrossRefGoogle Scholar
  65. 65.
    Du H, Zhou W, Luo F, Zhu D, Qu S, Pei Z. Perovskite lithium and bismuth modified potassium-sodium niobium lead-free ceramics for high temperature applications. Appl Phys Lett. 2007;91:182909.CrossRefGoogle Scholar
  66. 66.
    Bahri F, Khemakhem H, Gargouri M, Simon A, Von der Muhll R, Ravez J. Dielectric and Raman studies on the solid solution (1 − x)BaTiO3/xNaNbO3 ceramics. Solid State Sci. 2003;5:1445–50.CrossRefGoogle Scholar
  67. 67.
    Du H, Zhou WC, Luo F, Zhu F, Qu D, Pei Z. Phase structure, dielectric properties, and relaxor behavior of (K0.5 Na0.5)NbO3–(Ba0.5Sr0.5)TiO3 lead-free solid solution for high temperature applications. J Appl Phys. 2009;105:124104.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  1. 1.EaStCHEM Research School of ChemistryUniversity of St AndrewsFifeScotland, UK
  2. 2.Laser DepartmentNational Institute for Laser, Plasma and Radiation Physics (INFLPR)BucharestRomania
  3. 3.Faculty of Mathematics and Natural SciencesUniversity of CraiovaCraiovaRomania

Personalised recommendations