Skip to main content
Log in

Thermal (kinetic) stability of the inclusion compound on the base of Li-contain MOF [Li2(H2btc)]·dioxane

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The inclusion compounds, based on the metal-organic frameworks (MOFs), have promising practical application in gas storage, separation and fine purification of substances, and also in catalysis. These MOFs are crystalline compounds consisting of metal ions coordinated by bridging organic ligands with the formation of porous structures. We study the kinetic stability of the inclusion compound: [Li2(H2btc)]·dioxane (H4btc = 1,2,4,5-benzenetetracarboxylic acid, 1,4–dioxane = C4H8O2). The connection between the kinetic stability of inclusion compounds and the properties of the host matrix and of the guest molecules is considered. So as the centrosymmetric dioxane molecule can easily transform the chair conformation to the bath conformation, it can have the influence on the steric hindrance (as well as on the activation barrier) for the guest molecules removal. Therefore, the entropy contribution is as favorable factor, as the energetic one in the kinetic stability of the supramolecular compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fromm KM. Coordination polymer networks with s-block metal ions. Coord Chem Rev. 2008;252:856–85.

    Article  CAS  Google Scholar 

  2. Kirillov AM. Hexamethylenetetramine: an old new building block for design of coordination polymers. Coord Chem Rev. 2011;255:1603–22.

    Article  CAS  Google Scholar 

  3. Mani–Biswas M, Tahir Cagin T. Insights from theoretical calculations on structure, dynamics, phase behavior and hydrogen sorption in nanoporous metal organic frameworks. Comput Theor Chem. 2012;987:42–56.

    Article  Google Scholar 

  4. Lyszczek R, Iwan M. Investigation of desolvation process in lanthanide dinicotinates, J. Therm Anal Calorim. 2011;103:633–9.

    Article  CAS  Google Scholar 

  5. Jiang C-H, Song LF, Jiao CL, Zhang J, Sun LX, Xu F, Du Y, Cao Z. Exceptional thermal stability and thermodynamic properties of lithium based metal-organic framework. J Therm Anal Calorim. 2011;103:373–80.

    Article  CAS  Google Scholar 

  6. Zhou YZ, Sun LX, Cao Z, Zhang J, Xu F, Song LF, Zhao ZM, Zou YJ. Heat capacities and thermodynamic properties M(HBTC)(4, 4′-bipy)·3DMF (M = Ni and Co). J Therm Anal Calorim. 2012;110:949–54.

    Article  CAS  Google Scholar 

  7. Dybtsev DN, Yutkin MP, Peresypkina EV, Virovets AV, Serre C, Ferey G, Fedin VP. Isoreticular homochiral porous metal–organic structures with tunable pore sizes. Inorg Chem. 2007;46:6843–5.

    Article  CAS  Google Scholar 

  8. Dybtsev DN, Yutkin MP, Samsonenko DG, Fedin VP, Nuzhdin AL, Bezrukov AA, Bryliakov RP, Talsi EP, Belosludov RV, Mizuseki H, Kawazoe Y, Subbotin OS, Belosludov VR. Modular homochiral porous coordination polymers: rational design, enantioselective guest exchange sorption and ab initio calculations of host-guest interactions. Chem Eur J. 2010;10:348–56.

    Google Scholar 

  9. Yin Z, Zeng MH. Recent advance in porous coordination polymers from the view-point of crystalline-state transformation. Sci China Chem. 2011;54:1371–94.

    Article  CAS  Google Scholar 

  10. Eddaoudi M, Li H, Reineke T, Fehr M, Kelley D, Groy TL, Yaghi OM. Design and synthesis of metal-organic frameworks with permanent microporosity. Top Catal. 1999;105:105–11.

    Article  Google Scholar 

  11. Rowsell JLC, Yaghi OM. Strategies for hydrogen storage in metal-organic frameworks. Angew Chem Int Ed. 2005;44:4670–9.

    Article  CAS  Google Scholar 

  12. Zhao D, Yuan DQ, Zhou HC. The current status of hydrogen storage in metal-organic frameworks. Energ Env Sci. 2008;1:222–35.

    Article  CAS  Google Scholar 

  13. Combelles C, Doublet ML. Structural, magnetic and redox properties of a new cathode material for Li-ion batteries: the iron-based metal organic framework. Ionics. 2008;14:279–83.

    Article  CAS  Google Scholar 

  14. Murray LJ, Dinca M, Long JR. Hydrogen storage in metalorganic frameworks. Chem Soc Rev. 2009;38:1294–314.

    Article  CAS  Google Scholar 

  15. Xiang ZH, Cao DP, Lan JH, Wang WC, Broom DP. Multiscale simulation and modelling of adsorptive processes for energy gas storage and carbon dioxide capture in porous coordination frameworks. Energ Env Sci. 2010;3:1469–87.

    Article  CAS  Google Scholar 

  16. Maark TA, Pal S. A model study of effect of M = Li+, Na+, Be2+, Mg2+, and Al3+ ion decoration on hydrogen adsorption of metal-organic framework. Int J Hydrog Energ. 2010;535:12846–57.

    Article  Google Scholar 

  17. Dixit M, Maark AT, Pal S. Ab initio and periodic DFT investigation of hydrogen storage on light metal-decorated MOF-5. Int J Hydrog Energ. 2011;36:10816–27.

    Article  CAS  Google Scholar 

  18. Combelles C, Yahia MB, Pedesseau L, Doublet ML. FeII/FeIII mixed-valence state induced by Li-insertion into the metal-organic-framework Mil53(Fe): a DFT + U study. J Power Sourc. 2011;196:3426–32.

    Article  CAS  Google Scholar 

  19. Xiang Z, Hu Z, Yang W, Cao D. Lithium doping H2 storage. Int J Hydrog Energ. 2012;37:946–50.

    Article  CAS  Google Scholar 

  20. YuA Dyadin, Soldatov DV, Logvinenko VA, Lipkovsky J. Contact stabilization of host complex molecules during clathrate formation: the pyridine–zinc nitrate and the pyridine–cadmium nitrate systems. J Coord Chem. 1996;37:63–75.

    Article  Google Scholar 

  21. Logvinenko V, Dybtsev D, Fedin V, Drebushchak V, Yutkin M. The stability of inclusion compounds under heating. Part 2. The stability of inclusion compounds of layered zinc camphorate, linked by linear N-donor ligands. J Therm Anal Calorim. 2010;100:183–9.

    Article  CAS  Google Scholar 

  22. Logvinenko VA, Yutkin MP, Zavakhina MS, Fedin VP. Porous metal-organic frameworks (MOFs) as matrices for inclusion compounds. Kinetic stability under heating. J Therm Anal Calorim. 2012;109:555–60.

    Article  CAS  Google Scholar 

  23. Logvinenko V, Dybtsev D, Fedin V, Drebushchak V, Yutkin M. The stability of inclusion compounds under heating. Part I. Inclusion compounds of micro-porous manganese formate with included dioxane Mn(HCOO)2·1/3C4H8O2 and tetra- hydrofurane {Mn(HCOO)2·1/3C4H8O}. J. Therm Anal Calorim. 2007;90:463–7.

    Article  CAS  Google Scholar 

  24. Aliev SB, Samsonenko DG, Rakhmanova MI, Dybtsev DN, Fedin VP. Syntheses and structural characterization of lithium carboxylate frameworks and guest-dependent photoluminescence study. Cryst Growth Des. 2014;14:4355–63.

    Article  CAS  Google Scholar 

  25. Netzsch thermokinetics. http://www.netzsch-thermal-analysis.com/us/thermokinetics-workshop.

  26. Moukhina E. Determination of kinetic mechanisms for reactions measured with thermoanalytical instruments. J Therm Anal Calorim. 2012;109:1203–14.

    Article  CAS  Google Scholar 

  27. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  28. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. J Polym Sci. 1963;6:183–95.

    Google Scholar 

  29. Ozawa T. Estimation of activation energy by isoconversion methods. Thermochim Acta. 1992;203:159–65.

    Article  CAS  Google Scholar 

  30. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Nat Bur Stand. 1966;70:478–523.

    Google Scholar 

  31. Opfermann J, Kaisersberger E. An advantageous variant of the Ozawa-Flynn-Wall analysis. Thermochim Acta. 1992;203:167–75.

    Article  CAS  Google Scholar 

  32. Opferman JR, Kaisersberger E, Flammersheim HJ. Model-free analysis of thermo- analytical data-advantages and limitations. Thermochim Acta. 2001;391:119–27.

    Article  Google Scholar 

  33. Vyazovkin S. Model-free kinetics: staying free of multiplying entities without necessity. J Therm Anal Calorim. 2006;83:45–51.

    Article  CAS  Google Scholar 

  34. Simon P. Single-step kinetics approximation employing nonarrhenius temperature functions. J Therm Anal Calorim. 2005;79:703–8.

    Article  CAS  Google Scholar 

  35. Simon P. The single-step approximation: attributes, strong and weak sides. J Therm Anal Calorim. 2007;88:709–15.

    Article  CAS  Google Scholar 

  36. Simon P, Thomas P, Dubaj T, Cibulkova Z, Peller A, Veverka M. The mathematical incorrectness of the integral isoconversional methods in case of variable activation energy and the consequences. J Therm Anal Calorim. 2014;115:853–9.

    Article  CAS  Google Scholar 

  37. Sestak J. Is the original Kissinger equation obsolete today: not obsolete the entire non- isothermal kinetics? J Therm Anal Calorim. 2014;117:3–7.

    Article  CAS  Google Scholar 

  38. Vyazovkin S, Burnham AK, Criado JM, Luis A, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  39. Logvinenko V. Stability and reactivity of coordination and inclusion compounds in the reversible processes of thermal dissociation. Thermochim Acta. 1999;340:293–9.

    Article  Google Scholar 

  40. Logvinenko V. Solid state coordination chemistry. The quantitative thermoanalytical study of thermal dissociation reactions. J Therm Anal Calorim. 2000;60:9–15.

    Article  CAS  Google Scholar 

  41. Logvinenko V. Stability of supramolecular compounds under heating. Thermodynamic and kinetic aspects. J Therm Anal Calorim. 2010;101:577–83.

    Article  CAS  Google Scholar 

  42. Logvinenko V, Fedorov V, Mironov Y, Drebushchak V. Kinetic and thermodynamic stability of cluster compounds under heating. J Therm Anal. 2007;88:687–92.

    Article  CAS  Google Scholar 

  43. Logvinenko V, Drebushchak V, Pinakov D, Chekhova G. Thermodynamic and kinetic stability of inclusion compounds under heating. J Therm Anal. 2007;90:23–30.

    Article  CAS  Google Scholar 

  44. Pinakov DV, Logvinenko VA, Chekhova GN, Shubin YuV. The relationship between properties of fluorinated graphite intercalates and matrix composition. Part VI. J Therm Anal Calorim. 2014;115:503–9.

    Article  CAS  Google Scholar 

  45. Logvinenko VA, Belyaev AV, Vorob’eva SN. Dehydration process of rhodium sulfate crystalline hydrate. J Therm Anal Calorim. 2013;114:1177–81.

    Article  CAS  Google Scholar 

  46. Logvinenko V, Bakovets V, Trushnikova L. Dehydroxylation kinetics of gadolinium hydroxide. J Therm Anal Calorim. 2014;115:517–21.

    Article  CAS  Google Scholar 

  47. Delmon B, Introduction a la cinetique heterogene. Editions Technip, 7 Rue Nelaton. Paris 150, 1969.

  48. Dybtsev DN, Chun H, Yoon SH, Kim D, Kim K. Microporous manganese formate: a simple metal-organic porous material with high framework stability and highly selective gas sorption properties. J Am Chem Soc. 2004;126:32–3.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was partially supported by the Grant of the Government of the Russian Federation (GN 14.Z50.31.0006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir A. Logvinenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Logvinenko, V.A., Aliev, S.B. & Fedin, V.P. Thermal (kinetic) stability of the inclusion compound on the base of Li-contain MOF [Li2(H2btc)]·dioxane. J Therm Anal Calorim 120, 53–58 (2015). https://doi.org/10.1007/s10973-014-4228-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4228-y

Keywords

Navigation