Journal of Thermal Analysis and Calorimetry

, Volume 119, Issue 1, pp 453–460 | Cite as

Thermal-lens probing of the enhanced thermal diffusivity of gold nanofluid-ethylene glycol mixture

  • B. Rajesh Kumar
  • N. Shemeena Basheer
  • Sunil Jacob
  • Achamma Kurian
  • Sajan D. George


The thermal diffusivity values of mixtures comprising ethylene glycol and an aqueous dispersion of gold nanoparticles (50/50 volume ratio) is measured using dual-beam thermal-lens technique, as a function of concentration of gold nanoparticles, and the results are compared with the corresponding thermal diffusivity values of gold nanofluids alone. The results show that, in addition to the well-known effect of nanoparticle concentration, the host fluid also play a crucial role in determining the effective thermal diffusivity value of the mixture. The UV–Vis spectroscopic studies of nanoparticles, prepared via citrate reduction method, exhibit the surface plasmon resonance band peaking around 520 nm and the transmission electron microscopic studies reveal that the particles are well dispersed and are having an average size of 15 nm. The transmission electron microscopy images of the gold nanoparticles in the mixture clearly indicate the formation of chain-like aggregates due to dipole–dipole interaction. Such a chain-like structure allows easy transport of thermal energy, which results in enhancement of thermal diffusivity values of the mixture as compared to the gold nanofluids alone.


Gold nanoparticles Ethylene glycol Thermal diffusivity Thermal-lens technique 



AK is grateful to the Kerala State Council for Science, Technology and Environment (KSCSTE), Kerala, India for the financial assistance.


  1. 1.
    Taylor R, Coulombe S, Otanicar T, Phelan P, Gunawan A, Lv W, Rosengarten G, Prasher R, Tyagi H. Small particles, big impacts: a review of the diverse applications ofnanofluids. J Appl Phys. 2013;113:011301.CrossRefGoogle Scholar
  2. 2.
    Esfe MH, Saedodin S, Mahian O, Wongwises S. Thermal conductivity of Al2O3/water nanofluids. J Therm Anal Calorim. 2014;117:675–81.CrossRefGoogle Scholar
  3. 3.
    Saidur R, Leong KY, Mohammad HA. A review on applications and challenges of nanofluids. Renew Sustain Energy Rev. 2011;15:1646–68.CrossRefGoogle Scholar
  4. 4.
    Wong KV, De Leon O. Applications of nanofluids: current and future. Adv Mech Eng. 2010;2010:1–11.Google Scholar
  5. 5.
    Barbes B, Paramo R, Blanco E, Casanova C. Thermal conductivity and specific heat capacity measurements of CuO nanofluids. J Therm Anal Calorim. 2014;115:1883–91.CrossRefGoogle Scholar
  6. 6.
    Lee JH, Lee SH, Choi CJ, Jang SP, Choi SUS. A review of thermal conductivity data, mechanisms and models for nanofluids. Int J Micro-Nano Scale Transp. 2010;1:269–322.CrossRefGoogle Scholar
  7. 7.
    Buongiorno J, Venerus DC, Prabhat N, et al. A benchmark study on the thermal conductivity of nanofluids. J Appl Phys. 2009;106:094312.CrossRefGoogle Scholar
  8. 8.
    Das SK, Choi SUS, Patel HE. Heat transfer in nanofluids–a review. Heat Transf Eng. 2006;27:3–19.CrossRefGoogle Scholar
  9. 9.
    Trisaksri V, Wongwises S. Critical review of heat transfer characteristics of nanofluids. Renew Sustain Energy Rev. 2007;11:512–23.CrossRefGoogle Scholar
  10. 10.
    Moghadassi AR, Masoud Hosseini S, Henneke D, Elkamel A. A model of nanofluids effective thermal conductivity based on dimensionless groups. J Therm Anal Calorim. 2009;96:81–4.CrossRefGoogle Scholar
  11. 11.
    Evans W, Fish J, Keblinski P. Role of Brownian motion hydrodynamics on nanofluid thermal conductivity. Appl Phys Lett. 2006;88:093116.CrossRefGoogle Scholar
  12. 12.
    Mehta S, Chauhan KP, Kanagaraj S. Modeling of thermal conductivity of nanofluids by modifying Maxwell’s equation using cell model approach. J Nanopart Res. 2011;13:2791–8.CrossRefGoogle Scholar
  13. 13.
    Wang XQ, Mujumdar AS. A review on nanofluids-part I: theoretical and numerical investigations. Braz J Chem Eng. 2008;25:613–30.Google Scholar
  14. 14.
    Xie H, Fujii M, Zhang X. Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture. Int J Heat Mass Transf. 2005;48:2926–32.CrossRefGoogle Scholar
  15. 15.
    Feng Y, Yu B, Xu P, Zou M. The effective thermal conductivity of nanofluids based on the nanolayer and the aggregation of nanoparticles. J Phys D Appl Phys. 2007;40:3164.CrossRefGoogle Scholar
  16. 16.
    Yu W, Choi SUS. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanopart Res. 2003;5:167–71.CrossRefGoogle Scholar
  17. 17.
    Eapen J, Rusconi R, Piazza R, Yip S. The classical nature of thermal conduction in nanofluids. J Heat Transf. 2010;132:102402.CrossRefGoogle Scholar
  18. 18.
    Wang ZL, Tang DW, Liu S, Zheng XH, Araki N. Thermal-conductivity and thermal-diffusivity measurements of nanofluids by 3ω method and mechanism analysis of heat transport. Int J Thermophys. 2007;28:1255–68.CrossRefGoogle Scholar
  19. 19.
    Zhang X, Gu H, Fujii M. Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Exp Therm Fluid Sci. 2007;31:593–9.CrossRefGoogle Scholar
  20. 20.
    Murshed SMS, Leong KC, Yang C. Determination of the effective thermal diffusivity of nanofluids by the double hot-wire technique. J Phys D Appl Phys. 2006;39:5316.CrossRefGoogle Scholar
  21. 21.
    George SD, Radhakrishnan P, Nampoori VPN, Vallabhan CPG. Photothermal deflection measurement on heat transport in GaAs epitaxial layers. Phys Rev B. 2003;68:165319.CrossRefGoogle Scholar
  22. 22.
    George SD, Saravanan S, Anatharaman MR, Venketachalam S, Radhakrishnan P, Nampoori VPN. Thermal characterization of doped polyaniline and its composites with CoPc. Phys Rev B. 2004;69:235201.CrossRefGoogle Scholar
  23. 23.
    Manuel A, Kumar BR, Basheer NS, Kumari BS, Paulose PI, Kurian A, George SD. Thermo–optic characterization of neodymium/nickel doped silica glasses prepared via sol-gel route. Spectrochim Acta A. 2012;98:474–8.CrossRefGoogle Scholar
  24. 24.
    Kumar BR, Basheer NS, Manuel A, Kurian A, George SD. Effect of annealing temperature on the thermo-optic properties of holmium doped silica glasses prepared by sol-gel method. AIP Conf Proc. 2011;1391:158–60.CrossRefGoogle Scholar
  25. 25.
    Gordon JP, Leite RCC, Moore RS, Porto SP, Whinnery JR. Long–transient effects in lasers with inserted liquid samples. J Appl Phys. 1965;36:3–8.CrossRefGoogle Scholar
  26. 26.
    Hu C, Whinnery JR. New thermooptical measurement method and a comparison with other methods. Appl Opt. 1973;12:72–9.CrossRefGoogle Scholar
  27. 27.
    Brannon JH, Magde D. Absolute quantum yield determination by thermal blooming. J Phys Chem. 1978;82:705–9.CrossRefGoogle Scholar
  28. 28.
    Kurian A, Unnikrishnan KP, George DS, Gopinath P, Nampoori VPN, Vallabhan CPG. Thermal lens spectrum of organic dyes using optical parametric oscillator. Spectrochim Acta A. 2003;59:487–91.CrossRefGoogle Scholar
  29. 29.
    Moreira LM, Carvalho EA, Bell MJV, Anjos V, Sant’Ana AC, Alves APP, Fragneaud B, Sena LA, Archanjo BS, Achete CA. Thermo-optical properties of silver and gold nanofluids. J Therm Anal Calorim. 2013;114:557–64.CrossRefGoogle Scholar
  30. 30.
    Kumar BR, Basheer NS, Kurian A, George SD. Effect of particle size on the thermo-optic properties of gold nanofluids–a thermal lens study. AIP Conf Proc. 2014;1576:118–21.Google Scholar
  31. 31.
    Hari M, Joseph SA, Mathew S, Nithyaja B, Nampoori VPN, Radhakrishnan P. Thermal diffusivity of nanofluids composed of rod-shaped silver nanoparticles. Int J Therm Sci. 2012;64:188–94.CrossRefGoogle Scholar
  32. 32.
    Joseph SA, Hari M, Mathew S, Sharma G, Hadiya VM, Radhakrishnan P, Nampoori VPN. Thermal diffusivity of rhodamine 6G incorporated in silver nanofluid measured using mode-matched thermal lens technique. Opt Commun. 2010;283:313–7.CrossRefGoogle Scholar
  33. 33.
    Basheer NS, Kumar BR, Kurian A, George SD. Thermal lens probing of distant dependent fluorescence quenching of Rhodamine 6G by silver nanoparticles. J Lumin. 2013;137:225–9.CrossRefGoogle Scholar
  34. 34.
    Basheer NS, Kumar BR, Kurian A, George SD. Silver nanoparticle size–dependent measurement of quantum efficiency of Rhodamine 6G. Appl Phys B. 2013;113:581–7.CrossRefGoogle Scholar
  35. 35.
    Kumar BR, Basheer NS, Kurian A, George SD. Study of concentration-dependent quantum yield of Rhodamine 6G by gold nanoparticles using thermal-lens technique. Appl Phys B. 2014;115:335–42.CrossRefGoogle Scholar
  36. 36.
    Kumar BR, Basheer NS, Kurian A, George SD. Thermal-Lens study on the distance-dependent energy transfer from Rhodamine 6G to gold Nanoparticles. Int J Thermophys. 2013;34:1982–92.CrossRefGoogle Scholar
  37. 37.
    Barbes B, Paramo R, Blanco E, Pastoriza-Gallego MJ, Pineiro MM, Legido JL, Casanova C. Thermal conductivity and specific heat capacity measurements of Al2O3 nanofluids. J Therm Anal Calorim. 2013;111:1615–25.CrossRefGoogle Scholar
  38. 38.
    Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci. 1973;241:20–2.CrossRefGoogle Scholar
  39. 39.
    Lewis DJ, Day TM, MacPherson JV, Pikramenou Z. Luminescent nanobeads: attachment of surface reactive Eu(III) complexes to gold nanoparticles. Chem. Commun. 2006;13:1433–5.CrossRefGoogle Scholar
  40. 40.
    Bindhu CV, Harilal SS, Nampoori VPN, Vallabhan CPG. Thermal diffusivity measurements in organic liquids using transient thermal lens calorimetry. Opt Eng. 1998;37:2791–4.CrossRefGoogle Scholar
  41. 41.
    Balderas-López JA, Mandelis A, Garcia JA. Thermal-wave resonator cavity design and measurements of the thermal diffusivity of liquids. Rev Sci Instrum. 2000;71:2933–7.CrossRefGoogle Scholar
  42. 42.
    Delenclos S, Chirtoc M, Sahraoui AH, Kolinsky C, Buisine JM. Assessment of calibration procedures for accurate determination of thermal parameters of liquids and their temperature dependence using the photopyroelectric method. Rev Sci Instrum. 2002;73:2773–80.CrossRefGoogle Scholar
  43. 43.
    Huang L, Liu LS. Simultaneous determination of thermal conductivity and thermal diffusivity of food and agricultural materials using a transient plane-source method. J Food Eng. 2009;95:179–85.CrossRefGoogle Scholar
  44. 44.
    Guimaraes AO, Machado FAL, da Silva EC, Mansanares AM. Investigating thermal properties of biodiesel/diesel mixtures using photopyroelectric technique. Thermochim Acta. 2012;527:125–30.Google Scholar
  45. 45.
    Bradley JS, Schmid G. Noble Metal Nanoparticles. In: Schmid G, editor. Nanoparticles: from theory to application. Weinheim: Wiley-VCH; 2004. p. 186–99.Google Scholar
  46. 46.
    Halsey TC, Duplantier B, Honda K. Multifractal dimensions and their fluctuations in diffusion-limited aggregation. Phys Rev Lett. 1997;78:1719–22.CrossRefGoogle Scholar
  47. 47.
    Quinten M, Kreibig U. Optical properties of aggregates of small metal particles. Surf Sci. 1986;172:557–77.CrossRefGoogle Scholar
  48. 48.
    Winslow WM. Induced fibration of suspensions. J Appl Phys. 1949;20:1137–40.CrossRefGoogle Scholar
  49. 49.
    Xu S, Bevis B, Arnsdorf MFB. The assembly of amyloidogenic yeast sup35 as assessed by scanning (atomic) force microscopy: an analogy to linear colloidal aggregation? Biophys J. 2001;81:446–54.CrossRefGoogle Scholar
  50. 50.
    Prasher R, Evans W, Meakin P, Fish J, Phelan P, Keblinski P. Effect of aggregation on thermal conduction in colloidal nanofluids. Appl Phys Lett. 2006;89:143119.CrossRefGoogle Scholar
  51. 51.
    Evans W, Prasher R, Fish J, Meakin P, Phelan P, Keblinski P. Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids. Int J Heat Mass Transf. 2008;51:1431–8.CrossRefGoogle Scholar
  52. 52.
    Shima PD, Philip J, Raj B. Influence of aggregation on thermal conductivity in stable and unstable nanofluids. Appl Phys Lett. 2010;97:153113.CrossRefGoogle Scholar
  53. 53.
    Rondino F, D’Amato R, Terranova G, Borsella E, Falconieri M. Thermal diffusivity enhancement in nanofluids based on pyrolytic titania nanopowders: importance of aggregate morphology. J Raman Spectrosc. 2014;45:528–32.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • B. Rajesh Kumar
    • 1
  • N. Shemeena Basheer
    • 1
  • Sunil Jacob
    • 2
  • Achamma Kurian
    • 1
  • Sajan D. George
    • 3
  1. 1.Photonics Lab, Department of PhysicsCatholicate CollegePathanamthittaIndia
  2. 2.Department of ChemistryCatholicate CollegePathanamthittaIndia
  3. 3.Centre for Atomic and Molecular PhysicsManipal UniversityManipalIndia

Personalised recommendations