Journal of Thermal Analysis and Calorimetry

, Volume 120, Issue 1, pp 59–66 | Cite as

Thermal analysis and structural characterization of copper(II) complexes with salicyladehydes

  • Ariadni Zianna
  • Konstantinos Chrissafis
  • Antonis Hatzidimitriou
  • Maria Lalia-Kantouri


The new copper (II) complexes with substituted salicylaldehyde ligands (X-saloH, where X = 3-methoxy and 5-methyl) formulated as [Cu(3-OCH3-salo)2(H2O)] (1) and [Cu(5-CH3-salo)2] (2), respectively, were synthesized and characterized by physicochemical methods and by spectroscopy (IR and UV–Vis). The different geometry around Cu2+ ion for the two complexes was proved by single-crystal X-ray diffraction analysis. Simultaneous TG/DTG–DTA techniques were used to analyze their thermal behavior under inert atmosphere, with particular attention to determine their thermal degradation pathways, which was found to be a multi-step decomposition accompanied by the release of the ligand molecules. The activation energy of the decomposition processes was calculated using the isoconversional Ozawa–Flynn–Wall (OFW) method and the reaction model was determined with the model fitting method.


Crystal structure TG/DTG-DTA Copper (II) complexes Salicylaldehydes Ozawa–Flynn–Wall method 

Supplementary material

10973_2014_4188_MOESM1_ESM.pdf (133 kb)
Detailed crystal data and structure refinement for complexes [Cu(3-OCH3-salo)2(H2O)]. 0.25 H2O (1) and [Cu(5-CH3-salo)2] (2) have been deposited with the Cambridge Crystallographic Data Centre under No CCDC 1014202 (1) and No CCDC 014203 (2). (PDF 133 kb)
10973_2014_4188_MOESM2_ESM.pdf (99 kb)
Copies of this information may be obtained free of charge from the Director, CCDC, 12 Union Road, Cambridge, CB2 IEZ, UK (fax: +44-1223-336033; e-mail: or (PDF 99 kb)
10973_2014_4188_MOESM3_ESM.cif (21 kb)
(CIF 21 kb)
10973_2014_4188_MOESM4_ESM.cif (26 kb)
(CIF 27 kb)


  1. 1.
    Crisponi G, Nurchi VM, Fanni D, Gerosa C, Nemolato S, Faa G. Copper-related diseases: from chemistry to molecular pathology. Coord Chem Rev. 2010;254:876–89.CrossRefGoogle Scholar
  2. 2.
    Prasad RN, Agrawal A. Synthesis and spectroscopic studiesof mixed ligand complexes of cobalt(II) with salicylaldehyde, hydroxyarylketones and beta-diketones. J Indian Chem Soc. 2006;83(1):75–7.Google Scholar
  3. 3.
    Hussain ST, Ahmad H, Atta MA, Afzal M, Saleem M. High performance liquidchromatography (HPLC), atomic absorption spectroscopy (AAS) and infrared spectroscopy determination and solvent extraction of uranium, using bis(salicylaldehyde) propylene diamine as complexing agent. J Trace Microprobe Tech. 1998;16(2):139–49.Google Scholar
  4. 4.
    Yang Y-M, Lu P-C, Zhu T-T, Liu C-H. Bis(2-formylphenolato-κ2 O, O′)iron(II). Acta Cryst. 2007;E63(6):m1613.Google Scholar
  5. 5.
    Wang Q, Wang D-Q. Aquabis(o-vanillinato- κ2O, O′)nickel(II). Acta Cryst. 2008;E64:m298.Google Scholar
  6. 6.
    Pessoa JC, Cavaco I, Correira I, Tomaz I, Duarte T, Matias PM. Oxovanadium(IV) complexes with aromatic aldehydes. J Inorg Biochem. 2000;80(1):35–9.CrossRefGoogle Scholar
  7. 7.
    Costes JP, Dahan F, Nicodeme FA. Trinuclear gadolinium complex: structure and magnetic properties. Inorg Chem. 2001;40:5285–7.CrossRefGoogle Scholar
  8. 8.
    Tang J, Hewitt I, Madhu NT, Chastanet G, Wernsdorfer W, Anson CE, Benelli C, Sessoli R, Powell AK. Dysprosium triangles showing single-molecule magnet behavior of thermally excited spin states. Angew Chem Int Ed. 2006;45:1729–33.CrossRefGoogle Scholar
  9. 9.
    Yu G-M, Zhao L, Zou L-F, Guo Y-N, Xu G-F, Li Y-H, Tang J. A tetranuclear nickel(II) cubane complex with O-Vanillin ligand. J Chem Crystallogr. 2011;41:606–9.CrossRefGoogle Scholar
  10. 10.
    Tangoulis V, Lalia-Kantouri M, Gdaniec M, Papadopoulos Ch, Miletic V, Czapik A. New type of single chain magnet: pseudo-one-dimensional chain of high-spin Co(II) exhibiting ferromagnetic intrachain interactions. Inorg Chem. 2013;52:6559–69.CrossRefGoogle Scholar
  11. 11.
    Lalia-Kantouri M, Papadopoulos CD, Hatzidimitriou AG, Skoulika S. Hetero-heptanuclear (Fe–Na) complexes of salicylaldehydes: crystal and molecular structure of [Fe2(3-OCH3-salo)8Na5]. 3OH.8H2O. Struct Chem. 2009;20(2):177–84.CrossRefGoogle Scholar
  12. 12.
    Li SH, Gao SK, Liu SX, Guo YN. Five metal (II) coordination polymers constructed from two vanillin derivatives: from discrete structure to 3D diamondoid network. Cryst Growth Des. 2010;10:495–503.CrossRefGoogle Scholar
  13. 13.
    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.CrossRefGoogle Scholar
  14. 14.
    Flynn JH, Wall LA. A quick direct method for the determination of activation energy from thermogravimetric data. J Polym Sci B Polym Lett. 1966;4(5):323–8.CrossRefGoogle Scholar
  15. 15.
    Zianna A, Psomas G, Hatzidimitriou AA, Coutouli-Argyropoulou E, Lalia-Kantouri M. Zinc complexes of salicylaldehydes: synthesis, characterization and DNA-binding properties. J Inorg Biochem. 2013;127:116–26.CrossRefGoogle Scholar
  16. 16.
    Zianna A, Vecchio S, Gdaniec M, Czapik A, Hatzidimitriou A, Lalia-Kantouri M. Synthesis, thermal analysis, and spectroscopic and structural characterizations of zinc(II) complexes with salicylaldehydes. J Therm Anal Calorim. 2013;112:455–64.CrossRefGoogle Scholar
  17. 17.
    Madison WI, Bruker Analytical X-ray Systems, Inc., Apex2, (2006), Version 2 User Manual, M86-E01078.Google Scholar
  18. 18.
    Palatinus L, Chapuis G. Superflip—a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J Appl Crystallogr. 2007;40:786–90.CrossRefGoogle Scholar
  19. 19.
    Betteridge PW, Carruthers JR, Cooper RI, Prout K, Watkin DJ. Program CRYSTALS, software for guided crystal structure analysis. J Appl Crystallogr. 2003;36:1487.CrossRefGoogle Scholar
  20. 20.
    De Meulenaer J, Tompa H. The absorption correction in crystal structure analysis. Acta Cryst. 1965;19(6):1014–8.CrossRefGoogle Scholar
  21. 21.
    Watkin DJ, Prout CK, Pearce LG. CAMERON program, chemical crystallographic laboratory. UK.: Oxford University; 1996.Google Scholar
  22. 22.
    Silverstein RM, Bassler GC, Morvill G. Spectrometric identification of organic compounds. 6th ed. New York: Wiley; 1998.Google Scholar
  23. 23.
    Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. 5th ed. New York: Wiley-Interscience; 1997.Google Scholar
  24. 24.
    Lever AB. Inorganic electronic spectroscopy, 2nd Ed., Elsevier, 1984.Google Scholar
  25. 25.
    Addison AW, Rao TN, Reedijk J, van Rijn J, Verchoor GC. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate J. Chem Soc Dalton Trans. 1984;7:1349–56.CrossRefGoogle Scholar
  26. 26.
    Opfermann J. Kinetic analysis using multivatiate non-linear regression i. Basic concepts. J Therm Anal Cal. 2000;60:641–58.CrossRefGoogle Scholar
  27. 27.
    Sestak J. Rationale and fallacy of thermoanalytical kinetic patterns: how we model subject matter. J Therm Anal Calorim. 2012;110:5–16.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Ariadni Zianna
    • 1
  • Konstantinos Chrissafis
    • 2
  • Antonis Hatzidimitriou
    • 1
  • Maria Lalia-Kantouri
    • 1
  1. 1.Department of Chemistry, Laboratory of Inorganic ChemistryAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Solid State Physics Department, School of PhysicsAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations