Journal of Thermal Analysis and Calorimetry

, Volume 119, Issue 2, pp 851–863 | Cite as

Performance of composites with metakaolin-blended cements

  • Ľudovít Krajči
  • Subhash C. Mojumdar
  • Ivan Janotka
  • Francisca Puertas
  • Marta Palacios
  • Marta Kuliffayová


Nowadays the blended cements acquire the merit of high significance due to the thermal, energetic and ecological demands for ordinary Portland cement (PC) production. Metakaolin as a partial substitute of PC represents important pozzolana contributing to production of effective cement composites with high quality. Pozzolanic reaction of metakaolinite with PC in the presence of water is main reason of this statement. Comparison of three types of metakaolin sand (fineness below 60 μm) with different metakaolinite content (31–40 mass%) is presented in this study. The substitution of PC with metakaolin sand of the maximal metakaolinite content (40 mass%) leads to the highest compressive strengths of relevant composites. This is valid for composites with the highest substitution of PC by metakaolin sand in specimens (20 and 40 mass%). The best effectiveness of pozzolanic reaction is given especially by the highest consumption of portlandite which represents composite with the maximal metakaolinite content in metakaolin sand (40 mass%) and the higher substitution level of PC by metakaolin sand in specimens. This fact is connected with the improvement of pore structure parameters resulting in the pore structure refinement as well as permeability decreases. Both 29Si MAS NMR and 27Al MAS NMR spectra of metakaolin sands and respective composites confirm the most intense pozzolanic reaction in the case of metakaolin sand with the highest metakaolinite content (40 mass%). The results are properly supplemented by scanning electron microscopy (SEM) identifying the formed typical phases. The study has shown that metakaolin sand with reduced metakaolinite contents is also applicable as a pozzolanic addition to PC in the on-coming building practice.


Metakaolin sand Cement composite Pozzolanic reaction Metakaolinite content Compressive strength 



The authors are thankful to the Slovak Grant Agency VEGA (project No. 2/0064/14) for the support this work. This research was also funded by Slovak Academy of Sciences (SASci) and Spanish National Research Council (CSIC) under project 2007SK0005 (2008–2009).


  1. 1.
    Rashad AM, Zeedan Sayieda R. The effect of activator concentration on the residual strength of alkali-activated fly ash pastes subjected to thermal load. Constr Build Mater. 2011;25:3098–107.CrossRefGoogle Scholar
  2. 2.
    Palou MT, Majling J, Dováľ M, Kozánková J, Mojumdar SC. Formation and stability of crystallohydrates in the non-equilibrium system during hydration of SAB cements. Ceram-Silikaty. 2005;49:230–6.Google Scholar
  3. 3.
    Mojumdar SC. Processing-moisture resistance and thermal analysis of macro-defect-free materials. J Therm Anal Calorim. 2001;64:1133–9.CrossRefGoogle Scholar
  4. 4.
    Drábik M, Galikova L, Hanic F, Sharp JH. MDF-related compositions based on novel low-energy clinker. Chem Pap. 1997;51:363–6.Google Scholar
  5. 5.
    Janotka I, Krajči L. Sulphate resistance and passivation ability of the mortar made from pozzolan cement with zeolite. J Therm Anal Calorim. 2008;94:7–14.CrossRefGoogle Scholar
  6. 6.
    Schvarzman A, Kovler K, Schamban I, Grader G, Shter G. Influence of chemical, phase composition of mineral admixtures on their pozzolanic activity. Adv Cem Res. 2002;14:35–41.CrossRefGoogle Scholar
  7. 7.
    Chandrasekhar S, Ramaswamy S. Influence of mineral impurities on the properties of kaolin and its thermally treated products. Appl Clay Sci. 2002;21:133–42.CrossRefGoogle Scholar
  8. 8.
    Vavro M, Martinec P. Durability properties of concrete with admixtures of thermally activated kaolins and shales. In: Proceeding of the international conference on quality and reliability in building industry. Levoča; 2006. p. 399–404.Google Scholar
  9. 9.
    Wong LS, Hashim R, Ali F. Improved strength and reduced permeability of stabilized peat: focus on application of kaolin as a pozzolanic additive. Constr Build Mater. 2013;40:783–92.CrossRefGoogle Scholar
  10. 10.
    Taggart MS, Miligan WO, Studer HP. Electron microscope studies of clays. Clay Clay Miner. 1954;3:31–95.CrossRefGoogle Scholar
  11. 11.
    Prasad MS, Reid KJ, Murray HH. Kaolin processing, properties and applications. Appl Clay Sci. 1991;6:87–119.CrossRefGoogle Scholar
  12. 12.
    Murray HH. Traditional and new applications for kaolin, smectite and palygorskite: a general overview. Appl Clay Sci. 2000;17:207–21.CrossRefGoogle Scholar
  13. 13.
    Kostuch JA, Walters V, Jones TR. High performance concretes incorporating metakaolin: a review. In: Dhir RK, Jones MR, editors. Concrete 2000, economic and durable concrete through excellence. London: E and FN Spon; 1993. p. 1799–811.Google Scholar
  14. 14.
    Poon CS, Lam I, Kou SC, Womg YL, Wong R. Rate of pozzolanic reaction of metakaolin in high-performance cement pastes. Cem Concr Res. 2001;31:1301–6.CrossRefGoogle Scholar
  15. 15.
    da Cunha ALC, Goncalves JP, Büchler PM, Dweck J. Effects of metakaolin pozzolanic activity in the early stages of cement type II paste and mortar hydration. J Therm Anal Calorim. 2008;92:115–9.CrossRefGoogle Scholar
  16. 16.
    Talero R, Rahhal V. Calorimetric comparison of Portland cements containing silica fume and metakaolin. J Therm Anal Calorim. 2009;96:383–93.CrossRefGoogle Scholar
  17. 17.
    Moser RD, Jayapalan AR, Garas VY, Kurtis KE. Assessment of binary and ternary blends of metakaolin and Class C fly ash for alkali-silica reaction mitigation in concrete. Cem Concr Res. 2010;40:1664–72.CrossRefGoogle Scholar
  18. 18.
    Shebl SS. Development of new efficient premixed blended metakaolin-cementitious fireproofing compounds. Cem Wapno Beton. 2010;77:279–88.Google Scholar
  19. 19.
    Cassagnabere F, Mouret M, Escadeillas G, Broilliard P, Bertrand A. Metakaolin, a solution for the precast industry to limit the clinker content in concrete: mechanical aspects. Constr Build Mater. 2010;24:1109–18.CrossRefGoogle Scholar
  20. 20.
    Andrejkovičová S, Ferraz E, Velosa AL, Silva AS, Rocha F. Fine sepiolite addition to air lime-metakaolin mortars. Clay Miner. 2011;46:621–35.CrossRefGoogle Scholar
  21. 21.
    Taylor-Lange SC, Riding KA, Juenger MCG. Increasing the reactivity of metakaolin-cement blends using zinc oxide. Cem Concr Comp. 2012;34:835–47.CrossRefGoogle Scholar
  22. 22.
    He C, Osbaeck B, Makovicky E. Pozzolanic reactions of six principal clay minerals: activation, reactivity, assessments and technological effects. Cem Concr Res. 1995;25:1691–702.CrossRefGoogle Scholar
  23. 23.
    Zhang MH, Malhotra VM. Characteristics of thermally activated aluminosilicate, pozzolanic material and its use in concrete. Cem Concr Res. 1995;25:1713–25.CrossRefGoogle Scholar
  24. 24.
    Badogiannis E, Papadakis VG, Chaniotakis E, Tsivilis S. Exploitation of poor Greek kaolins: strength development of metakaolin concrete and evaluation by means of K-value. Cem Concr Res. 2004;34:1035–41.CrossRefGoogle Scholar
  25. 25.
    Frias M. The effect of metakaolin on the reaction products and microporosity in blended cement pastes submitted to long hydration time and high curing temperature. Adv Cem Res. 2006;18:1–6.CrossRefGoogle Scholar
  26. 26.
    Torres J, de Gutiérrez RM, Puertas F. Effect of kaolin treatment temperature on mortar chloride permeability. Mater Constr. 2007;57:61–9.CrossRefGoogle Scholar
  27. 27.
    Krajči L, Mojumdar SC, Kuliffayová M, Janotka I. Thermal and porosimetric analysis used for microstructure characterization of metakaolin sand blended Portland cement mortar. In: Proceedings of the 19th CTAS annual workshop (book of abstracts). Ottawa, Canada: CTAS; 2009. p. 29.Google Scholar
  28. 28.
    Coleman NJ. Mc Whinnie WR. The solid state chemistry of metakaolin-blended ordinary Portland cement. J Mater Sci. 2000;35:2701–10.CrossRefGoogle Scholar
  29. 29.
    Fernandez R, Martirena F, Scrivener KI. The origin of the pozzolanic activity of calcined clay minerals: a comparison between kaolinite, illite and montmorillonite. Cem Concr Res. 2011;41:113–22.CrossRefGoogle Scholar
  30. 30.
    Brooks JJ, Johari MMA. Effect of metakaolin on creep and shrinkage of concrete. Cem Concr Comp. 2001;23:495–502.CrossRefGoogle Scholar
  31. 31.
    Li Z, Ding Z. Property improvement of Portland cement by incorporating with metakaolin and slag. Cem Concr Res. 2003;33:579–84.CrossRefGoogle Scholar
  32. 32.
    Siddique R, Klaus J. Influence of metakaolin on the properties of mortar and concrete: a review. Appl Clay Sci. 2009;43:392–400.CrossRefGoogle Scholar
  33. 33.
    Parande AK, Babu BR, Karthik MA, Kumaar D, Palaniswamy N. Study on strength and corrosion performance for steel embedded in metakaolin blended concrete/mortar. Constr Build Mater. 2008;22:127–34.CrossRefGoogle Scholar
  34. 34.
    Lagier F, Kurtis KE. Influence of Portland cement composition on early age reactions with metakaolin. Cem Concr Res. 2007;37:1411–7.CrossRefGoogle Scholar
  35. 35.
    Justice JM, Kennsion LH, Mohr BJ, Beckwith SL, Mc Cormick LE, Wiggins B, Zhang ZZ, Kurtis KE. Comparison of two metakaolins and a silica fume used as a supplementary cementitious material. In: ACI Publications SP-228. Detriot: American Concrete Institute; 2005. p. 213–36.Google Scholar
  36. 36.
    Bonakdar M, Bakhshi Ghatibafian M. Properties of high-performance concrete containing high reactivity metakaolin. In: ACI Publication SP-228. Detriot: American Concrete Institute; 2005. p. 287–96.Google Scholar
  37. 37.
    Neville AM. Properties of concrete 4th final ed. Harlow: Addison Wesley Logman; 1996.Google Scholar
  38. 38.
    Palomo A, Blanco-Varela MT, Granizo ML, Puertas F, Vazquez T, Gratzeek MW. Chemical stability of cementitious materials based on metakaolin. Cem Concr Res. 1999;29:997–1004.CrossRefGoogle Scholar
  39. 39.
    Khatib JM, Wild S. Pore size distribution of metakaolin paste. Cem Concr Res. 1996;26:1545–53.CrossRefGoogle Scholar
  40. 40.
    Coleman NJ, Page CL. Aspects of the pore solution chemistry of hydrated cement pastes containing metakaolin. Cem Concr Res. 1997;27:147–54.CrossRefGoogle Scholar
  41. 41.
    Mehla PK, Monteiro PJM. Concrete: microstructure properties and materials. New York: McGraw Hill; 2006.Google Scholar
  42. 42.
    Ambroise J, Maximilien S, Peara J. Properties of metakaolin blended cements. Adv Cem Based Mater. 1994;1:161–8.CrossRefGoogle Scholar
  43. 43.
    Asbridge AH, Jones TR, Osborne GJ. High performance metakaolin concrete: results of large scale trials in aggressive environments. In: Proceedings of the international conference on concrete in the service of mankind. Ed: Dhir RK, Hewlett PC. Dundee: Radical Concrete Technology; 1996. p. 13–24.Google Scholar
  44. 44.
    Khater AM. Influence of metakaolin on resistivity of cement mortar to magnesium chloride solution. Ceram-Silikaty. 2010;54:325–33.Google Scholar
  45. 45.
    Jerga J, Halas P. Ingress of chloride into the prestressed concrete structure. In: Proceedings of the 5th international conference on concrete. Ed: ICC, Prague; 1990. p. 400–04.Google Scholar
  46. 46.
    Jerga J. Physico-mechanical properties of carbonated concrete. Constr Build Mater. 2004;18:645–52.CrossRefGoogle Scholar
  47. 47.
    Kurdowski W. Durability of blended cements in aggressive media. In: Ghosh SN, editor. Progress in cement and concrete, mineral admixtures in cement and concrete. New Delhi: ABI Books Private Ltd; 1993. p. 449–65.Google Scholar
  48. 48.
    Samet B, Mnif T, Chaabouni M. Use of kaolinite clay as a pozzolanic material for cements: formulation of blended cements. Cem Concr Comp. 2007;29:741–9.CrossRefGoogle Scholar
  49. 49.
    Podgieter-Vermaak SS, Podgieter JH. Metakaolin as an extender in South African cement. J Mater Civ Eng. 2006;18:619–23.CrossRefGoogle Scholar
  50. 50.
    Schvarzman A, Kovler K, Grader GS, Shter GE. The effect of dehydroxylation/amorphization degree on pozzolanic activity of kaolinite. Cem Concr Res. 2003;33:405–16.CrossRefGoogle Scholar
  51. 51.
    Badogiannis E, Kakali G, Dimopoulou G, Chaniotakis E, Tsivilis S. Metakaolin as a main cement constituent. Exploitation of poor Greek kaolins. Cem Concr Comp. 2005;27:197–203.CrossRefGoogle Scholar
  52. 52.
    Mermerdas K, Gesoglu M, Güneyisi E, Őztaran T. Strength development of concretes incorporated with metakaolin and different types of calcined kaolins. Constr Build Mater. 2012;37:766–74.CrossRefGoogle Scholar
  53. 53.
    Kraus I, Galko I, Uhlik P, Kűhnel R. Geological prospecting of clay deposits. Invited lecture. In: Proceedings of the international conference Euroclay 2003 (Book of abstracts). Modena: ICE; 2003. p. 160–61.Google Scholar
  54. 54.
    Kraus I, Manfredini T, Uhlik P, Hvožďara P, Dubíková M, Grygar T, Streško V, Pavliková J, Hanúsková M. Mineralogical, chemical and technological characterization of kaolinite sands from deposit Vyšný Petrovec. Geol Carpath. 2002;53:197–8.Google Scholar
  55. 55.
    Pentrak M, Madejova J, Andrejkovičová S, Uhlik P, Komadel P. Stability of kaolin sand from Vyšný Petrovec deposit (South Slovakia) in an acid environment. Geol Carpath. 2012;63:503–12.Google Scholar
  56. 56.
    Krajči L, Janotka I, Kraus I, Jamnický P. Burnt kaolin sand as pozzolanic material for cement hydration. Ceram-Silikaty. 2007;51:217–24.Google Scholar
  57. 57.
    Janotka I, Puertas F, Palacios M, Varga C, Krajči L. Metakaolin sand-promising addition for Portland cement. Mater Constr. 2010;60:73–88.CrossRefGoogle Scholar
  58. 58.
    Janotka I, Puertas F, Palacios M, Kuliffayová M, Varga C. Metakaolin sand-blended cement pastes: rheology, hydration process and mechanical properties. Constr Build Mater. 2010;24:791–802.CrossRefGoogle Scholar
  59. 59.
    Krajči L, Mojumdar SC, Kuliffayová M, Janotka I. Microstructure of Portland cement mortar amended by burnt kaolin sand. J Therm Anal Calorim. 2010;100:779–87.CrossRefGoogle Scholar
  60. 60.
    Kuliffayová M, Krajči L, Janotka I, Šmatko V. Thermal behaviour and characterization of cement composites with burnt kaolin sand. J Therm Anal Calorim. 2012;108:425–32.CrossRefGoogle Scholar
  61. 61.
    STN EN 197-1: 2002/A1: 2004/A3: 2007. Cement. Part 1: Composition, specifications and conformity criteria for common cements; 2002. Assessed 1 April 2002.Google Scholar
  62. 62.
    STN EN 196 - 2: 2005. Methods of testing cement. Part 2: Chemical analysis of cement.Google Scholar
  63. 63.
    Eberl DD. User´s guide to RockJock-a program for determining quantitative mineralogy from powder X-ray diffraction data. In: U.S. geological survey, open-file report 03-78; 2003. p. 47.Google Scholar
  64. 64.
    Zibouche F, Kerjoudj H, d´Espinose JB, Van Damme H. Geopolymers from Algerian metakaolin. Influence of secondary minerals. Appl Clay Sci. 2009;43:453–8.CrossRefGoogle Scholar
  65. 65.
    Carolla DL, Kempa TF, Bastow TJ, Smith ME. Solid-state NMR characterization of the thermal transformation of a Hungarian white illite. Solid State Nucl Magn Reson. 2005;28:31–43.CrossRefGoogle Scholar
  66. 66.
    Sanz J, Serratosa JM, Stone WEE. Distribution of isomorphous substitutions in silicates by NMR spectroscopy. J Mol Struc. 1986;141:269–71.CrossRefGoogle Scholar
  67. 67.
    Love CA, Richardson IG, Brough AR. Composition and structure of C-S-H in white Portland cement—20 % metakaolin pastes hydrated at 25 °C. Cem Concr Res. 2007;37:109–17.CrossRefGoogle Scholar
  68. 68.
    Kwan S, LaRosa J, Grutzeck MW. 29Si and 27Al MAS NMR study of stratlingite. J Am Ceram Soc. 1995;78:1921–6.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Ľudovít Krajči
    • 1
  • Subhash C. Mojumdar
    • 2
  • Ivan Janotka
    • 3
    • 1
  • Francisca Puertas
    • 4
  • Marta Palacios
    • 5
  • Marta Kuliffayová
    • 1
  1. 1.Institute of Construction and ArchitectureSlovak Academy of SciencesBratislavaSlovakia
  2. 2.Department of ChemistryUniversity of GuelphGuelphCanada
  3. 3.Building Testing and Research InstituteBratislavaSlovakia
  4. 4.Eduardo Torroja Institute for Construction Sciences, IETcc-CSICMadridSpain
  5. 5.Institute of Building MaterialsSwiss Federal Institute of Technology Zürich, ETHZZurichSwitzerland

Personalised recommendations