Skip to main content
Log in

Performance of composites with metakaolin-blended cements

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Nowadays the blended cements acquire the merit of high significance due to the thermal, energetic and ecological demands for ordinary Portland cement (PC) production. Metakaolin as a partial substitute of PC represents important pozzolana contributing to production of effective cement composites with high quality. Pozzolanic reaction of metakaolinite with PC in the presence of water is main reason of this statement. Comparison of three types of metakaolin sand (fineness below 60 μm) with different metakaolinite content (31–40 mass%) is presented in this study. The substitution of PC with metakaolin sand of the maximal metakaolinite content (40 mass%) leads to the highest compressive strengths of relevant composites. This is valid for composites with the highest substitution of PC by metakaolin sand in specimens (20 and 40 mass%). The best effectiveness of pozzolanic reaction is given especially by the highest consumption of portlandite which represents composite with the maximal metakaolinite content in metakaolin sand (40 mass%) and the higher substitution level of PC by metakaolin sand in specimens. This fact is connected with the improvement of pore structure parameters resulting in the pore structure refinement as well as permeability decreases. Both 29Si MAS NMR and 27Al MAS NMR spectra of metakaolin sands and respective composites confirm the most intense pozzolanic reaction in the case of metakaolin sand with the highest metakaolinite content (40 mass%). The results are properly supplemented by scanning electron microscopy (SEM) identifying the formed typical phases. The study has shown that metakaolin sand with reduced metakaolinite contents is also applicable as a pozzolanic addition to PC in the on-coming building practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Rashad AM, Zeedan Sayieda R. The effect of activator concentration on the residual strength of alkali-activated fly ash pastes subjected to thermal load. Constr Build Mater. 2011;25:3098–107.

    Article  Google Scholar 

  2. Palou MT, Majling J, Dováľ M, Kozánková J, Mojumdar SC. Formation and stability of crystallohydrates in the non-equilibrium system during hydration of SAB cements. Ceram-Silikaty. 2005;49:230–6.

    CAS  Google Scholar 

  3. Mojumdar SC. Processing-moisture resistance and thermal analysis of macro-defect-free materials. J Therm Anal Calorim. 2001;64:1133–9.

    Article  CAS  Google Scholar 

  4. Drábik M, Galikova L, Hanic F, Sharp JH. MDF-related compositions based on novel low-energy clinker. Chem Pap. 1997;51:363–6.

    Google Scholar 

  5. Janotka I, Krajči L. Sulphate resistance and passivation ability of the mortar made from pozzolan cement with zeolite. J Therm Anal Calorim. 2008;94:7–14.

    Article  CAS  Google Scholar 

  6. Schvarzman A, Kovler K, Schamban I, Grader G, Shter G. Influence of chemical, phase composition of mineral admixtures on their pozzolanic activity. Adv Cem Res. 2002;14:35–41.

    Article  Google Scholar 

  7. Chandrasekhar S, Ramaswamy S. Influence of mineral impurities on the properties of kaolin and its thermally treated products. Appl Clay Sci. 2002;21:133–42.

    Article  CAS  Google Scholar 

  8. Vavro M, Martinec P. Durability properties of concrete with admixtures of thermally activated kaolins and shales. In: Proceeding of the international conference on quality and reliability in building industry. Levoča; 2006. p. 399–404.

  9. Wong LS, Hashim R, Ali F. Improved strength and reduced permeability of stabilized peat: focus on application of kaolin as a pozzolanic additive. Constr Build Mater. 2013;40:783–92.

    Article  Google Scholar 

  10. Taggart MS, Miligan WO, Studer HP. Electron microscope studies of clays. Clay Clay Miner. 1954;3:31–95.

    Article  Google Scholar 

  11. Prasad MS, Reid KJ, Murray HH. Kaolin processing, properties and applications. Appl Clay Sci. 1991;6:87–119.

    Article  CAS  Google Scholar 

  12. Murray HH. Traditional and new applications for kaolin, smectite and palygorskite: a general overview. Appl Clay Sci. 2000;17:207–21.

    Article  CAS  Google Scholar 

  13. Kostuch JA, Walters V, Jones TR. High performance concretes incorporating metakaolin: a review. In: Dhir RK, Jones MR, editors. Concrete 2000, economic and durable concrete through excellence. London: E and FN Spon; 1993. p. 1799–811.

    Google Scholar 

  14. Poon CS, Lam I, Kou SC, Womg YL, Wong R. Rate of pozzolanic reaction of metakaolin in high-performance cement pastes. Cem Concr Res. 2001;31:1301–6.

    Article  CAS  Google Scholar 

  15. da Cunha ALC, Goncalves JP, Büchler PM, Dweck J. Effects of metakaolin pozzolanic activity in the early stages of cement type II paste and mortar hydration. J Therm Anal Calorim. 2008;92:115–9.

    Article  Google Scholar 

  16. Talero R, Rahhal V. Calorimetric comparison of Portland cements containing silica fume and metakaolin. J Therm Anal Calorim. 2009;96:383–93.

    Article  CAS  Google Scholar 

  17. Moser RD, Jayapalan AR, Garas VY, Kurtis KE. Assessment of binary and ternary blends of metakaolin and Class C fly ash for alkali-silica reaction mitigation in concrete. Cem Concr Res. 2010;40:1664–72.

    Article  CAS  Google Scholar 

  18. Shebl SS. Development of new efficient premixed blended metakaolin-cementitious fireproofing compounds. Cem Wapno Beton. 2010;77:279–88.

    Google Scholar 

  19. Cassagnabere F, Mouret M, Escadeillas G, Broilliard P, Bertrand A. Metakaolin, a solution for the precast industry to limit the clinker content in concrete: mechanical aspects. Constr Build Mater. 2010;24:1109–18.

    Article  Google Scholar 

  20. Andrejkovičová S, Ferraz E, Velosa AL, Silva AS, Rocha F. Fine sepiolite addition to air lime-metakaolin mortars. Clay Miner. 2011;46:621–35.

    Article  Google Scholar 

  21. Taylor-Lange SC, Riding KA, Juenger MCG. Increasing the reactivity of metakaolin-cement blends using zinc oxide. Cem Concr Comp. 2012;34:835–47.

    Article  CAS  Google Scholar 

  22. He C, Osbaeck B, Makovicky E. Pozzolanic reactions of six principal clay minerals: activation, reactivity, assessments and technological effects. Cem Concr Res. 1995;25:1691–702.

    Article  CAS  Google Scholar 

  23. Zhang MH, Malhotra VM. Characteristics of thermally activated aluminosilicate, pozzolanic material and its use in concrete. Cem Concr Res. 1995;25:1713–25.

    Article  CAS  Google Scholar 

  24. Badogiannis E, Papadakis VG, Chaniotakis E, Tsivilis S. Exploitation of poor Greek kaolins: strength development of metakaolin concrete and evaluation by means of K-value. Cem Concr Res. 2004;34:1035–41.

    Article  CAS  Google Scholar 

  25. Frias M. The effect of metakaolin on the reaction products and microporosity in blended cement pastes submitted to long hydration time and high curing temperature. Adv Cem Res. 2006;18:1–6.

    Article  CAS  Google Scholar 

  26. Torres J, de Gutiérrez RM, Puertas F. Effect of kaolin treatment temperature on mortar chloride permeability. Mater Constr. 2007;57:61–9.

    Article  CAS  Google Scholar 

  27. Krajči L, Mojumdar SC, Kuliffayová M, Janotka I. Thermal and porosimetric analysis used for microstructure characterization of metakaolin sand blended Portland cement mortar. In: Proceedings of the 19th CTAS annual workshop (book of abstracts). Ottawa, Canada: CTAS; 2009. p. 29.

  28. Coleman NJ. Mc Whinnie WR. The solid state chemistry of metakaolin-blended ordinary Portland cement. J Mater Sci. 2000;35:2701–10.

    Article  CAS  Google Scholar 

  29. Fernandez R, Martirena F, Scrivener KI. The origin of the pozzolanic activity of calcined clay minerals: a comparison between kaolinite, illite and montmorillonite. Cem Concr Res. 2011;41:113–22.

    Article  CAS  Google Scholar 

  30. Brooks JJ, Johari MMA. Effect of metakaolin on creep and shrinkage of concrete. Cem Concr Comp. 2001;23:495–502.

    Article  CAS  Google Scholar 

  31. Li Z, Ding Z. Property improvement of Portland cement by incorporating with metakaolin and slag. Cem Concr Res. 2003;33:579–84.

    Article  CAS  Google Scholar 

  32. Siddique R, Klaus J. Influence of metakaolin on the properties of mortar and concrete: a review. Appl Clay Sci. 2009;43:392–400.

    Article  CAS  Google Scholar 

  33. Parande AK, Babu BR, Karthik MA, Kumaar D, Palaniswamy N. Study on strength and corrosion performance for steel embedded in metakaolin blended concrete/mortar. Constr Build Mater. 2008;22:127–34.

    Article  Google Scholar 

  34. Lagier F, Kurtis KE. Influence of Portland cement composition on early age reactions with metakaolin. Cem Concr Res. 2007;37:1411–7.

    Article  CAS  Google Scholar 

  35. Justice JM, Kennsion LH, Mohr BJ, Beckwith SL, Mc Cormick LE, Wiggins B, Zhang ZZ, Kurtis KE. Comparison of two metakaolins and a silica fume used as a supplementary cementitious material. In: ACI Publications SP-228. Detriot: American Concrete Institute; 2005. p. 213–36.

  36. Bonakdar M, Bakhshi Ghatibafian M. Properties of high-performance concrete containing high reactivity metakaolin. In: ACI Publication SP-228. Detriot: American Concrete Institute; 2005. p. 287–96.

  37. Neville AM. Properties of concrete 4th final ed. Harlow: Addison Wesley Logman; 1996.

  38. Palomo A, Blanco-Varela MT, Granizo ML, Puertas F, Vazquez T, Gratzeek MW. Chemical stability of cementitious materials based on metakaolin. Cem Concr Res. 1999;29:997–1004.

    Article  CAS  Google Scholar 

  39. Khatib JM, Wild S. Pore size distribution of metakaolin paste. Cem Concr Res. 1996;26:1545–53.

    Article  CAS  Google Scholar 

  40. Coleman NJ, Page CL. Aspects of the pore solution chemistry of hydrated cement pastes containing metakaolin. Cem Concr Res. 1997;27:147–54.

    Article  CAS  Google Scholar 

  41. Mehla PK, Monteiro PJM. Concrete: microstructure properties and materials. New York: McGraw Hill; 2006.

    Google Scholar 

  42. Ambroise J, Maximilien S, Peara J. Properties of metakaolin blended cements. Adv Cem Based Mater. 1994;1:161–8.

    Article  CAS  Google Scholar 

  43. Asbridge AH, Jones TR, Osborne GJ. High performance metakaolin concrete: results of large scale trials in aggressive environments. In: Proceedings of the international conference on concrete in the service of mankind. Ed: Dhir RK, Hewlett PC. Dundee: Radical Concrete Technology; 1996. p. 13–24.

  44. Khater AM. Influence of metakaolin on resistivity of cement mortar to magnesium chloride solution. Ceram-Silikaty. 2010;54:325–33.

    CAS  Google Scholar 

  45. Jerga J, Halas P. Ingress of chloride into the prestressed concrete structure. In: Proceedings of the 5th international conference on concrete. Ed: ICC, Prague; 1990. p. 400–04.

  46. Jerga J. Physico-mechanical properties of carbonated concrete. Constr Build Mater. 2004;18:645–52.

    Article  Google Scholar 

  47. Kurdowski W. Durability of blended cements in aggressive media. In: Ghosh SN, editor. Progress in cement and concrete, mineral admixtures in cement and concrete. New Delhi: ABI Books Private Ltd; 1993. p. 449–65.

    Google Scholar 

  48. Samet B, Mnif T, Chaabouni M. Use of kaolinite clay as a pozzolanic material for cements: formulation of blended cements. Cem Concr Comp. 2007;29:741–9.

    Article  CAS  Google Scholar 

  49. Podgieter-Vermaak SS, Podgieter JH. Metakaolin as an extender in South African cement. J Mater Civ Eng. 2006;18:619–23.

    Article  Google Scholar 

  50. Schvarzman A, Kovler K, Grader GS, Shter GE. The effect of dehydroxylation/amorphization degree on pozzolanic activity of kaolinite. Cem Concr Res. 2003;33:405–16.

    Article  Google Scholar 

  51. Badogiannis E, Kakali G, Dimopoulou G, Chaniotakis E, Tsivilis S. Metakaolin as a main cement constituent. Exploitation of poor Greek kaolins. Cem Concr Comp. 2005;27:197–203.

    Article  CAS  Google Scholar 

  52. Mermerdas K, Gesoglu M, Güneyisi E, Őztaran T. Strength development of concretes incorporated with metakaolin and different types of calcined kaolins. Constr Build Mater. 2012;37:766–74.

    Article  Google Scholar 

  53. Kraus I, Galko I, Uhlik P, Kűhnel R. Geological prospecting of clay deposits. Invited lecture. In: Proceedings of the international conference Euroclay 2003 (Book of abstracts). Modena: ICE; 2003. p. 160–61.

  54. Kraus I, Manfredini T, Uhlik P, Hvožďara P, Dubíková M, Grygar T, Streško V, Pavliková J, Hanúsková M. Mineralogical, chemical and technological characterization of kaolinite sands from deposit Vyšný Petrovec. Geol Carpath. 2002;53:197–8.

    Google Scholar 

  55. Pentrak M, Madejova J, Andrejkovičová S, Uhlik P, Komadel P. Stability of kaolin sand from Vyšný Petrovec deposit (South Slovakia) in an acid environment. Geol Carpath. 2012;63:503–12.

    CAS  Google Scholar 

  56. Krajči L, Janotka I, Kraus I, Jamnický P. Burnt kaolin sand as pozzolanic material for cement hydration. Ceram-Silikaty. 2007;51:217–24.

    Google Scholar 

  57. Janotka I, Puertas F, Palacios M, Varga C, Krajči L. Metakaolin sand-promising addition for Portland cement. Mater Constr. 2010;60:73–88.

    Article  CAS  Google Scholar 

  58. Janotka I, Puertas F, Palacios M, Kuliffayová M, Varga C. Metakaolin sand-blended cement pastes: rheology, hydration process and mechanical properties. Constr Build Mater. 2010;24:791–802.

    Article  Google Scholar 

  59. Krajči L, Mojumdar SC, Kuliffayová M, Janotka I. Microstructure of Portland cement mortar amended by burnt kaolin sand. J Therm Anal Calorim. 2010;100:779–87.

    Article  Google Scholar 

  60. Kuliffayová M, Krajči L, Janotka I, Šmatko V. Thermal behaviour and characterization of cement composites with burnt kaolin sand. J Therm Anal Calorim. 2012;108:425–32.

    Article  Google Scholar 

  61. STN EN 197-1: 2002/A1: 2004/A3: 2007. Cement. Part 1: Composition, specifications and conformity criteria for common cements; 2002. Assessed 1 April 2002.

  62. STN EN 196 - 2: 2005. Methods of testing cement. Part 2: Chemical analysis of cement.

  63. Eberl DD. User´s guide to RockJock-a program for determining quantitative mineralogy from powder X-ray diffraction data. In: U.S. geological survey, open-file report 03-78; 2003. p. 47.

  64. Zibouche F, Kerjoudj H, d´Espinose JB, Van Damme H. Geopolymers from Algerian metakaolin. Influence of secondary minerals. Appl Clay Sci. 2009;43:453–8.

    Article  CAS  Google Scholar 

  65. Carolla DL, Kempa TF, Bastow TJ, Smith ME. Solid-state NMR characterization of the thermal transformation of a Hungarian white illite. Solid State Nucl Magn Reson. 2005;28:31–43.

    Article  Google Scholar 

  66. Sanz J, Serratosa JM, Stone WEE. Distribution of isomorphous substitutions in silicates by NMR spectroscopy. J Mol Struc. 1986;141:269–71.

    Article  CAS  Google Scholar 

  67. Love CA, Richardson IG, Brough AR. Composition and structure of C-S-H in white Portland cement—20 % metakaolin pastes hydrated at 25 °C. Cem Concr Res. 2007;37:109–17.

    Article  CAS  Google Scholar 

  68. Kwan S, LaRosa J, Grutzeck MW. 29Si and 27Al MAS NMR study of stratlingite. J Am Ceram Soc. 1995;78:1921–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Slovak Grant Agency VEGA (project No. 2/0064/14) for the support this work. This research was also funded by Slovak Academy of Sciences (SASci) and Spanish National Research Council (CSIC) under project 2007SK0005 (2008–2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhash C. Mojumdar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krajči, Ľ., Mojumdar, S.C., Janotka, I. et al. Performance of composites with metakaolin-blended cements. J Therm Anal Calorim 119, 851–863 (2015). https://doi.org/10.1007/s10973-014-4119-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4119-2

Keywords

Navigation