Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 118, Issue 3, pp 1577–1584 | Cite as

An experimental study on thermal decomposition behavior of magnesite

  • Lu Tian
  • Arash Tahmasebi
  • Jianglong Yu
Article

Abstract

Thermal decomposition of magnesite is investigated by using a TG–MS. Different kinetic methods including Coats–Redfern, Flynn–Wall–Ozawa, and Kissinger–Akahira–Sunose are used to investigate the thermal decomposition kinetics of magnesite. It was observed that the activation energy values obtained by these methods are similar. The average apparent activation energy is found to be about 203 kJ mol−1. The raw magnesite and its decomposition products obtained at different temperatures are analyzed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscope (SEM). The concentration of functional groups, crystal structure and composition, and apparent morphology of decomposition products were studied in detail. The FTIR, XRD, and SEM analyses showed that magnesite was completely decomposed at 973 K to form MgO.

Keywords

Magnesite Thermal decomposition Thermogravimetric analysis Activation energy 

Notes

Acknowledgements

This study was supported by the Natural Science Foundation of China (21176109, U1361120, and 21210102058). The authors also acknowledge the financial support through the Liaoning Outstanding Professorship Program (2011).

References

  1. 1.
    Ding J, Chen Z, Yang G. Metallogeny and resource potential of magnesite deposits in China. Geol China. 2013;40:1699–711.Google Scholar
  2. 2.
    He Y, Jiang M. Present situation of mining and utilization and existing problems of magnesite resource of our country. Refract Lime. 2012;37(3):25–8.Google Scholar
  3. 3.
    Shen Z, Ni M, Guo S, Chen X, Tong M, Lu J. Studies on magnesium-based wet flue gas desulphurization process with a spray scrubber. Asian J Chem. 2013;25:6727–32.Google Scholar
  4. 4.
    Guo RT, Pan WG, Zhang XB, Jin Q, Xu HJ, Ren JX. The effect of heat decomposition temperature on the dissolution rate of magnesium-based materials for wet flue gas desulfurization. Energy Sour Part A. 2014;36:1–4.CrossRefGoogle Scholar
  5. 5.
    Liu X, Feng Y, Li H, Zhang P, Wang P. Thermal decomposition kinetics of magnesite from thermogravimetric data. J Therm Anal Calorim. 2012;107:407–12.CrossRefGoogle Scholar
  6. 6.
    Demir F, Dönmez B, Okur H, Sevim F. Calcination kinetic of magnesite from thermogravimetric data. Chem Eng Res Des. 2003;81:618–22.CrossRefGoogle Scholar
  7. 7.
    Hurst H. The thermal decomposition of magnesite in nitrogen. Thermochim Acta. 1991;189:91–6.CrossRefGoogle Scholar
  8. 8.
    Sheila D. Thermal analysis studies on the decomposition of magnesite. Int J Min Process. 1993;37:73–88.CrossRefGoogle Scholar
  9. 9.
    Unluer C, Al-Tabbaa A. Characterization of light and heavy hydrated magnesium carbonates using thermal analysis. J Therm Anal Calorim. 2014;115:595–607.CrossRefGoogle Scholar
  10. 10.
    Hu C, Mi J, Shang S, Shangguan J. The study of thermal decomposition kinetics of zinc oxide formation from zinc oxalate dihydrate. J Therm Anal Calorim. 2014;115:1119–25.CrossRefGoogle Scholar
  11. 11.
    Ren H, Chen Z, Wu Y, Yang M, Chen J, Hu H, et al. Thermal characterization and kinetic analysis of nesquehonite, hydromagnesite, and brucite, using TG–DTG and DSC techniques. J Therm Anal Calorim. 2014;115:1949–60.CrossRefGoogle Scholar
  12. 12.
    Samtani M, Dollimore D, Alexander K. Comparison of dolomite decomposition kinetics with related carbonates and the effect of procedural variables on its kinetic parameters. Thermochim Acta. 2002;392:135–45.CrossRefGoogle Scholar
  13. 13.
    Šimon P, Thomas P, Dubaj T, Cibulková Z, Peller A, Veverka M. The mathematical incorrectness of the integral isoconversional methods in case of variable activation energy and the consequences. J Therm Anal Calorim. 2014;115:853–9.CrossRefGoogle Scholar
  14. 14.
    Tahmasebi A, Kassim MA, Yu J, Bhattacharya S. Thermogravimetric study of the combustion of Tetraselmis suecica microalgae and its blend with a Victorian brown coal in O2/N2 and O2/CO2 atmospheres. Bioresour Technol. 2013;150:15–27.CrossRefGoogle Scholar
  15. 15.
    Meng F, Yu J, Tahmasebi A, Han Y. Pyrolysis and combustion behavior of coal gangue in O2/CO2 and O2/N2 mixtures using thermogravimetric analysis and a drop tube furnace. Energy Fuels. 2013;27:2923–32.CrossRefGoogle Scholar
  16. 16.
    Ledeţi I, Fuliaş A, Vlase G, Vlase T, Bercean V, Doca N. Thermal behaviour and kinetic study of some triazoles as potential anti-inflammatory agents. J Therm Anal Calorim. 2013;114:1295–305.CrossRefGoogle Scholar
  17. 17.
    Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci. 1966;4:323–8.CrossRefGoogle Scholar
  18. 18.
    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.CrossRefGoogle Scholar
  19. 19.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  20. 20.
    Çılgı G, Koyundereli CH, Donat R. Thermal and kinetic analysis of uranium salts. J Therm Anal Calorim. 2014;108:1213–22.Google Scholar
  21. 21.
    Muraleedharan K. Thermal decomposition kinetics of potassium iodate. J Therm Anal Calorim. 2013;114:491–6.CrossRefGoogle Scholar
  22. 22.
    Yilmaz MS, Figen AK, Pişkin S. Study on the dehydration kinetics of tunellite using non-isothermal methods. Res Chem Intermed. 2013. doi: 10.1007/s11164-013-1318-6.
  23. 23.
    Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.CrossRefGoogle Scholar
  24. 24.
    Pilarska A, Paukszta D, Szwarc K, Jesionowski T. The effect of modifiers and precipitation conditions on physicochemical properties of MgCO3 and its calcinates. Physicochem Problem Min Process. 2011;46:79–90.Google Scholar
  25. 25.
    L’vov BV. Mechanism and kinetics of thermal decomposition of carbonates. Thermochim Acta. 2002;386:1–16.CrossRefGoogle Scholar
  26. 26.
    Trittschack R, Grobéty B, Brodard P. Kinetics of the chrysotile and brucite dehydroxylation reaction: a combined non-isothermal/isothermal thermogravimetric analysis and high-temperature X-ray powder diffraction study. Phys Chem Miner. 2014;41:198–214.CrossRefGoogle Scholar
  27. 27.
    Jia C, Wang Q, Ge J, Xu X. Pyrolysis and combustion model of oil sands from non-isothermal thermogravimetric analysis data. J Therm Anal Calorim. 2014;116:1073–81.CrossRefGoogle Scholar
  28. 28.
    Yang N, Yue W. Inorganic non-metallic materials atlas manual. Wuhan university of technology press; 2000.Google Scholar
  29. 29.
    Lijiang W. Non-metallic mineral processing technology foundation. Beijing: Chemical Industry Press; 2010.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  1. 1.Key Laboratory of Advanced Coal and Coking Technology of Liaoning Province, School of Chemical EngineeringUniversity of Science and Technology LiaoningAnshanPeople’s Republic of China
  2. 2.Chemical EngineeringUniversity of NewcastleCallaghanAustralia

Personalised recommendations