Journal of Thermal Analysis and Calorimetry

, Volume 118, Issue 3, pp 1493–1504 | Cite as

Synthesis and performance studies of 1,5-diaminotetrazolium nitrate

  • Zhiyue Han
  • Zhiming Du
  • Zhihua Zhao
  • Lingqiao Meng
  • Linshuang Zhao
  • Xiaomin Cong


1,5-Diaminotetrazolium nitrate (HDATN) was synthesized with 1,5-diaminotetrazole (DAT) as the raw material. The maximum yield of HDATN was 95.3 %. The structure was characterized by elemental analysis, infrared spectrum, nuclear magnetic resonance spectrum and mass spectrum, and the possible fragmentation mechanism was discussed. The morphology was analyzed by SEM. The thermal stability of HDATN was investigated by TG-DSC and DTA techniques. The kinetic parameters including activation energy and pro-exponential factor were calculated by Kissinger equation. The performance of combustion, combustion heat, and formation enthalpy of HDATN were measured. The detonation products of HDATN were most nitrogen, which were analyzed by gas chromatograph and smoke analyzer. The density, formation heat, detonation pressure, and detonation velocity of HDATN were calculated. It exhibited prospective application in environmentally friendly gas generant and explosion field.


Nitrogen-rich compound Energetic ionic salt 1,5-Diaminotetrazolium nitrate Synthesis process optimization Performance 


  1. 1.
    Ming H, Hongzhen L, Jinshan L, et al. Synthesis and reactivity of high nitrogen compounds. Energ Mater. 2006;14:457–62.Google Scholar
  2. 2.
    Hiskey M, Chavez D. Insensitive high-nitrogen compounds. NTIS No: DE220012776133, 2001.Google Scholar
  3. 3.
    Marinescu M, Zalaru C, Florea M, Ionita P. Thermal behavior of several stable hydrazyl free radicals and of their parent hydrazines. J Therm Anal Calorim. 2014;116(1):259–63.CrossRefGoogle Scholar
  4. 4.
    Ali AN, Son SF, Hiskey M, et al. Novel high-nitrogen propellant use in solid fuel micropropulsion. J Propuls Power. 2004;20:120.CrossRefGoogle Scholar
  5. 5.
    Chavez D, Hiskey M, Naud DL. High-nitrogen fuels for low-smoke pyrotechnics. J Pyrotech. 1999;10:17–36.Google Scholar
  6. 6.
    Khandhadia PS, Burns SP. Thermally stable nonazide automotive airbag propellants. US 6306232, 2001.Google Scholar
  7. 7.
    Holl G, Klatopke TM, Weigand J. Preparation of dihydrazinium compounds of 5,5′-azotetrazolate type, used in propellant, pyrotechnic formulation, rocket fuel or gas-generating composition, involves reacting alkali metal azotetrazole and hydrazinium salt in aqueous medium. DE102005011563-A1, 2005.Google Scholar
  8. 8.
    Hiskey M, Chavez D, Naud DL, et al. Low smoke pyrotechnic compositions. US 6312537, 2001.Google Scholar
  9. 9.
    Khandhadia PS, Burns SP, Williams GK. High gas yield nonazide gas generants. US 6201505, 2001.Google Scholar
  10. 10.
    Haifeng H, Zihui M, Zhiming Z, et al. Energetic salt and ionic liquids. Prog Chem. 2009;29(1):152–63.Google Scholar
  11. 11.
    Gálvez-Ruiz JC, Holl G, Karaghiosoff K, et al. Derivatives of 1,5-diamino-1H-tetrazole: a new family of energetic heterocyclic-based salts. Inorg Chem. 2005;44(14):4237–53.Google Scholar
  12. 12.
    He C-L, Du Z-M, Cong X-M, et al. Synthesis and characterization of 1,5-diaminotetrazole and its derivatives. Theory Pract Energ Mater. 2009;3:673–5.Google Scholar
  13. 13.
    Santos LB, Ribeiro CA, Capela JMV, Crespi MS, et al. Kinetic parameters for thermal decomposition of hydrazine. J Therm Anal Calorim. 2013;113(3):1209–16.CrossRefGoogle Scholar
  14. 14.
    Chengfeng Ye, Shreeve JM. Rapid and accurate estimation of densities of room-temperature ionic liquids and salts. J Phys Chem A. 2007;111:1456–61.CrossRefGoogle Scholar
  15. 15.
    Chengfeng Ye, Shreeve JM. New atom/group volume additivity method to compensate for the impact of strong hydrogen bonding on densities of energetic materials. J Chem Eng Data. 2008;53:520–4.CrossRefGoogle Scholar
  16. 16.
    Jenkins HDB, Passmore J, Glsser L. Relationships among ionic lattice energies, molecular (formula unit) volumes, and thermochemical radii. Inorg Chem. 1999;38:3609–20.CrossRefGoogle Scholar
  17. 17.
    Gao H, Ye C, Piekarski CM, Shreeve JM. Computational characterization of energetic salts. J Phys Chem C. 2007;111:10718–31.CrossRefGoogle Scholar
  18. 18.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman VGZJR, Montgomery JA, Jr, Stratman REJ, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghvachari K, Foresman JB, Cioslowski J, Oritz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzales C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA, Gaussian 98, Revision A.9 ed., 1998.Google Scholar
  19. 19.
    Schmidt MW, Gordon MS, Boatz JA. Triazolium-based energetic ionic liquids. J Phys Chem A. 2005;109:7285–95.CrossRefGoogle Scholar
  20. 20.
    Jenkins HDB, Tudeal D, Glasser L. Lattice potential energy estimation for complex ionic salts from density measurements. Inorg Chem. 2002;41:2364–7.CrossRefGoogle Scholar
  21. 21.
    Kamlet MJ, Jacobs SJ. Chemistry of detonations. I. Simple method for calculating detonation properties of carbon–hydrogen–nitrogen–oxygen explosives. J Chem Phys. 1968;48:23.CrossRefGoogle Scholar
  22. 22.
    Kamlet MJ, Ablard JE. Chemistry of detonations. II. Buffered equilibrium. J Chem Phys. 1968;48:36.CrossRefGoogle Scholar
  23. 23.
    Kamlet MJ, Dickinson C. Chemistry of detonations. III. Evaluation of the simplified calculational method for chapman–jouguet detonation pressures on the basis of available experimental information. J Chem Phys. 1968;48:43.CrossRefGoogle Scholar
  24. 24.
    Eremenko LT, Nesterenko DA. Energetics of the decomposition of polynitrocubanes (analytical prediction). Chem Phys Rep. 1997;16:1675.Google Scholar
  25. 25.
    Astakhov AM, Stepanov RS, Babushkin AY. Detonation parameters of octanitrocubane. Combust Explos Shock Waves, (Engl. Transl.), 1998;34,85.Google Scholar
  26. 26.
    Kozyro AA, Frenkel ML, Krasulin AP, Simirskii VV, Kabo GYa. Thermodynamic properties of biuret in different states of aggregation. Russ J Phys Chem (Engl. Transl.), 1988;62,897.Google Scholar
  27. 27.
    NIST Chemistry WebBook. NIST Standard Reference Database Number 69-March, 2003. Accessed 23 Sep 2013.
  28. 28.
    Cox JD, Wagman DD, Medvedev VA. CODATA key values for thermodynamics. New York: Hemisphere Publishing Corp; 1984. p. 1.Google Scholar
  29. 29.
    Chase Jr. MW, NIST-JANAF themochemical tables. 4th ed. J Phys Chem Ref Data, Monograph; 1998;9.Google Scholar
  30. 30.
    Kohler J, Meyer R. Explosivstoffe. 9th ed. Weinheim: VCH; 1998.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Zhiyue Han
    • 1
  • Zhiming Du
    • 1
  • Zhihua Zhao
    • 1
  • Lingqiao Meng
    • 1
  • Linshuang Zhao
    • 1
  • Xiaomin Cong
    • 1
  1. 1.State Key Laboratory of Explosion Science and TechnologyBeijing Institute of TechnologyBeijingChina

Personalised recommendations