Journal of Thermal Analysis and Calorimetry

, Volume 118, Issue 3, pp 1431–1440 | Cite as

Synthesis, thermal analysis, and spectroscopic and structural characterizations of tetranuclear nickel(II) cubane-type clusters with 2-hydroxybenzaldehydes or 2-hydroxyphenones

  • Ariadni Zianna
  • Maja Šumar Ristović
  • Antonis Hatzidimitriou
  • Christos D. Papadopoulos
  • Maria Lalia-Kantouri


In this study, three novel tetranuclear nickel(II) cubane-type clusters with the general formula [Ni4(L)43-CH3O)4(CH3OH)4] [L: the anion of 5-methyl-2-hydroxybenzaldehyde (1), 2-hydroxypropiophenone (2), and 2-hydroxybenzophenone (3)] were synthesized and characterized by single-crystal X-ray diffraction analysis. The crystal structure of each compound contains a tetranuclear cubane core [Ni4O4] based on an approximately cubic array of altering nickel and oxygen atoms with intracluster metal–metal separations of 3.04–3.14 Å. Each Ni(II) atom is surrounded by two oxygen atoms from the ligand (L) and by the μ3-CH3O oxygen atom that bridges three Ni atoms of the cubane core. The coordination sphere of Ni is completed with one methanol molecule and making six-coordinate with a distorted octahedral geometry. These complexes were characterized also by spectroscopy (IR and UV–Vis). Simultaneous TG/DTG–DTA techniques were used to analyze their thermal behavior under inert atmosphere, with particular attention to determine their thermal degradation pathways, which was found to be a multi-step decomposition accompanied by the release of the ligand molecules. Finally, the kinetic analysis of the decomposition processes was performed for the first step of complex (3), since only this verifies the requirement of applying an isoconversional method like Kissinger–Akahira–Sunose (KAS). For this step, we found the average value E a = 107.8 ± 4.5 kJ mol−1.


Nickel(II) cubane-type clusters Crystal structure 2-Hydroxybenzaldehydes 2-Hydroxyphenones TG/DTG–DTA Kinetics 


  1. 1.
    Bertrand JA, Ginsberg AP, Kaplan RI, Kirkwood CE, Martin RL, Sherwood RC. Magnetic exchange in transition metal complexes. Ferromagnetic spin coupling in a tetranuclear nickel(II) cluster. Inorg Chem. 1971;10(2):240–6.CrossRefGoogle Scholar
  2. 2.
    Gladfelter WL, Lynch MW, Schaefer WP, Hendrickson DN, Gray HB. Synthesis, physical properties, and crystal structure of the cubane compound-bis(acetato)-m-tetrakis(methoxo-m-bis(2,5-dimethyl-2,5-diisocyanohexane)tetranickel(II) tetraphenylborate. Inorg Chem. 1981;20:2390–7.CrossRefGoogle Scholar
  3. 3.
    Beedle CC, Henderson JJ, Ho PC, Sayles T, Nakano M, O’Brie JR, Heroux KJ, del Barco E, Maple MB, Hendrickson DN. Ferromagnetic ordering and simultaneous fast magnetization tunneling in a Ni4 single-molecule magnet. Inorg Chem. 2010;49:5780–2.CrossRefGoogle Scholar
  4. 4.
    Yang EC, Wernsdorfer W, Zakharov LN, Karaki Y, Yamaguchi A, Isidro RM, Lu GD, Wilson SA, Rheingold AL, Ishimoto H, Hendrickson DN. Fast magnetization tunneling in tetranickel(II) single-molecule magnets. Inorg Chem. 2006;45:529–46.CrossRefGoogle Scholar
  5. 5.
    Moragues-Cánovas M, Helliwell M, Ricard L, Rivière É, Wernsdorfer W, Brechin EK, Mallah T. An Ni4 single-molecule magnet: synthesis, structure and low-temperature magnetic behavior. Eur J: Inorg Chem; 2004. p. 2219–22.Google Scholar
  6. 6.
    SalahElFallah M, Rentschler E, Caneschi A, Gatteschi D. Synthesis, crystal structure and magnetic properties of the tetranuclear complex [Ni4(OCH3)4(dbm)4(CH, OH)4]2(C2H5)2O. Inorg Chim Acta. 1996;247:231–5.CrossRefGoogle Scholar
  7. 7.
    Papaefstathiou GS, Escuer A, Mautner FA, Raptopoulou C, Terzis A, Perlepes SP, Vicente R. Use of the di-2-pyridyl ketone/acetate/dicyanamide “Blend” in manganese(II), cobalt(II) and nickel(II) chemistry: neutral cubane complexes. Eur J Inorg Chem. 2005;2005:879–93.CrossRefGoogle Scholar
  8. 8.
    Andrew JE, Blake AB. The crystal structure and magnetic properties of tetra-μ3-methoxytetrakis[salicylaldehydato(ethanol)nickel(II)]. J Chem Soc A. 1969:1456–61.Google Scholar
  9. 9.
    Yu GM, Zhao L, Zou LF, Guo YN, Xu GF, Li YH, Tang J. A tetranuclear nickel(II) cubane complex with O-vanillin ligand. J Chem Crystallogr. 2011;41:606–9.CrossRefGoogle Scholar
  10. 10.
    Ayikoe K, Butcher RJ, Gultneh Y. Tetrakis(μ3-Methoxo)-tetrakis(3-methoxysalicylaldehydato-O,O′)-tetrakis(methanol)-tetra-nickel(II). Acta Cryst. 2010;E66:m1487.Google Scholar
  11. 11.
    Habib F, Cook C, Korobkov I, Murugesu M. Novel in situ manganese-promoted double-aldol addition. Inorg Chim Acta. 2012;380:378–85.CrossRefGoogle Scholar
  12. 12.
    Costes JP, Novitchi G, Vendier L, Pilet G, Luneau D. Magnetic ordering of NiII Cubane complexes through hydrogen bonds. Comptes Rendue Chimie. 2012;15:849–55.CrossRefGoogle Scholar
  13. 13.
    Zhang SH, Li N, Ge CM, Feng C, Ma LF. Structures and magnetism of {Ni2Na2}, {Ni4} and {Ni6IINiIII} 2-hydroxy-3-alkoxy-benzaldehyde clusters. Dalton Trans. 2011;40:3000–7.CrossRefGoogle Scholar
  14. 14.
    Zhang SH, Zhang Yi-D, Zou HH, GuoJJ, Li HP, Song Y, Liang H. A family of cubane cobalt and nickel clusters: syntheses, structures and magnetic properties. Inorg Chim Acta. 2013;396:119–25.Google Scholar
  15. 15.
    Prasad RN, Agrawal A. Synthesis and spectroscopic studies of mixed ligand complexes of cobalt(II) with salicylaldehyde, hydroxyarylketones and beta-diketones. J Indian Chem Soc. 2006;83(1):75–7.Google Scholar
  16. 16.
    Lalia-Kantouri M, Gdaniec M, Choli-Papadopoulou T, Badounas A, Papadopoulos CD, Czapik A, Geromichalos GD, Sahpazidou D, Fani Tsitouroudi F. Effect of cobalt(II) complexes with dipyridylamine and salicylaldehydes on cultured tumor and non-tumor cells: synthesis, crystal structure investigations and biological activity. J Inorg Biochem. 2012;117:25–34.CrossRefGoogle Scholar
  17. 17.
    Hussain ST, Ahmad H, Atta MA, Afzal M, Saleem M. High performance liquid chromatography (HPLC), atomic absorption spectroscopy (AAS) and infrared spectroscopy determination and solvent extraction of uranium, using bis(salicylaldehyde) propylene diamine as complexing agent. J Trace Microprobe Tech. 1998;16(2):139–49.Google Scholar
  18. 18.
    Suzuki T, Kitamura S, Khota R, Sugihara K, Fujimoto N, Ohta S. Estrogenic and antiandrogenic activities of 17 benzophenone derivatives used as UV stabilizers and sunscreens. Toxicol Appl Pharmacol. 2005;203:9–17.CrossRefGoogle Scholar
  19. 19.
    Lalia-Kantouri M, Papadopoulos CD, Hatzidimitriou AG, Skoulika S. Hetero-heptanuclear (Fe–Na) complexes of salicylaldehydes: crystal and molecular structure of [Fe2(3-OCH3-salo)8/Na5]·3OH·8H2O. Struct Chem. 2009;20(2):177–84.CrossRefGoogle Scholar
  20. 20.
    Lalia-Kantouri M, Dimitriadis T, Papadopoulos CD, Gdaniec M, Czapik A, Hatzidimitriou AG. Synthesis and structural characterization of iron(III) complexes with 2-hydroxyphenones. Z Anorg Allg Chem. 2009;635(13):2185–90.CrossRefGoogle Scholar
  21. 21.
    Papadopoulos C, Kantiranis N, Vecchio S, Lalia-Kantouri M. Lanthanide complexes of 3-methoxy-salicylaldehyde: thermal and kinetic investigation by simultaneous TG/DTG–DTA coupled with MS. J Therm Anal Calorim. 2010;99:931–8.CrossRefGoogle Scholar
  22. 22.
    Zianna A, Vecchio S, Gdaniec M, Czapik A, Hatzidimitriou A, Lalia-Kantouri M. Synthesis, thermal analysis, and spectroscopic and structural characterizations of zinc(II) complexes with salicylaldehydes. J Therm Anal Calorim. 2013;112:455–64.CrossRefGoogle Scholar
  23. 23.
    Zianna A, Psomas G, Hatzidimitriou A, Coutouli-Argyropoulou E, Lalia-Kantouri M. Zinc complexes of salicylaldehydes: synthesis, characterization and DNA-binding properties. J Inorg Biochem. 2013;127:116–26.CrossRefGoogle Scholar
  24. 24.
    Materazzi S, Vecchio S, Wo LW, De Angelis Curtis S. Thermoanalytical studies of imidazole-substituted coordination compounds. Mn(II)-complexes of bis(1-methylimidazol-2-yl)ketone. J Therm Anal Calorim. 2011;103:59–64.Google Scholar
  25. 25.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetic committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.CrossRefGoogle Scholar
  26. 26.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  27. 27.
    Akahira T, Sunose T. Paper No. 246, 1969 Research report, Trans. joint convention of four electrical institutes. Chiba Inst Technol (Sci. Technol.) 1971;16:22–31.Google Scholar
  28. 28.
    Madison WI. Bruker Analytical X-ray Systems, Inc., Apex2, Version 2 User Manual, M86-E01078; 2006.Google Scholar
  29. 29.
    Palatinus L, Chapuis G. Superflip—a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J Appl Crystallogr. 2007;40:786–90.CrossRefGoogle Scholar
  30. 30.
    Betteridge PW, Carruthers JR, Cooper RI, Prout K, Watkin DJ. Program CRYSTALS, software for guided crystal structure analysis. J Appl Crystallogr. 2003;36:1487.Google Scholar
  31. 31.
    De Meulenaer J, Tompa H. The absorption correction in crystal structure analysis. Acta Cryst. 1965;19(6):1014–8.CrossRefGoogle Scholar
  32. 32.
    Watkin DJ, Prout CK, Pearce LG. CAMERON program. Oxford: Chemical Crystallographic Laboratory, Oxford University; 1996.Google Scholar
  33. 33.
    Brown ME, Dollimore D, Galwey AK. Reaction in the solid state: comprehensive chemical kinetics. In: Bamford CH, Tipper CFH, editors. Amsterdam: Elsevier; 1980. p. 22.Google Scholar
  34. 34.
    Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.CrossRefGoogle Scholar
  35. 35.
    Vyazovkin S. Isoconversional kinetics. In: Brown ME, Gallagher PK, editors. Handbook of thermal analysis and calorimetry, vol 5: recent advances, techniques and applications. Amsterdam: Elsevier; 2008. p. 503–38.Google Scholar
  36. 36.
    Vyazovkin S, Lesnikovich AI. Interpretation of the dependence of the effective values of kinetic parameters on the degree of transformation. Thermochim Acta. 1988;128:69–73.CrossRefGoogle Scholar
  37. 37.
    Budrugeac P. Some methodological problems concerning the kinetic analysis of non-isothermal data for thermal and thermooxidative degradation of polymers and polymeric materials. Polym Degrad Stab. 2005;89:265–73.CrossRefGoogle Scholar
  38. 38.
    Vyazovkin S, Lesnikovich AI. An approach to the solution of the inverse kinetic problem in the case of complex processes. Methods employing a series of thermoanalytical curves. Thermochim Acta. 1990;165:273–80.CrossRefGoogle Scholar
  39. 39.
    Vyazovkin S. A unified approach to kinetic processing of nonisothermal data. Int J Chem Kinet. 1996;28:95–101.CrossRefGoogle Scholar
  40. 40.
    Vyazovkin S, Wight CA. Kinetics in solids. Annu Rev Phys Chem. 1997;48:125–49.CrossRefGoogle Scholar
  41. 41.
    Vyazovkin S, Wight C. Isothermal and non-isothermal kinetics of thermally stimulated reactions of solids. Int Rev Phys Chem. 1998;17:407–33.CrossRefGoogle Scholar
  42. 42.
    Minić DM, Šumar-Ristović M, Miodragović Ð, Andjelković K, Poleti D. Kinetics and mechanism of degradation of Co(II)–N-benzyloxycarbonylglycinato complex. J Therm Anal Calorim. 2012;107:1167–76.CrossRefGoogle Scholar
  43. 43.
    Silverstein RM, Bassler GC, Morvill G. Spectrometric identification of organic compounds. 6th ed. New York: Wiley; 1998.Google Scholar
  44. 44.
    Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. 5th ed. New York: Wiley; 1997.Google Scholar
  45. 45.
    Cotton SA, Fisher VMA, Raithby PR, Schiffers S, Teat ST. Synthesis and structure of a dimeric scandium bis(μ-methoxy) complex. Inorg Chem Commun. 2008;11:822–4.CrossRefGoogle Scholar
  46. 46.
    Ouyang F, Kondo JN, Maruya K, Domen K. IR study on migration of 18OCH3 species on ZrO2. Catal Lett. 1998;50:179–81.CrossRefGoogle Scholar
  47. 47.
    Lever AB. Inorganic electronic spectroscopy. 2nd ed. Amsterdam: Elsevier; 1984. p. 507.Google Scholar
  48. 48.
    Fomina IG, Dobrokhotova ZhV, Aleksandrov GG, Kovba ML, Zhilov VI, Bogomyakov AS, Novotortsev VM, Eremenko IL. Carboxylate clusters with the M4O4 cubane-like core: pivalate cocrystal containing CoII and NiII. Russ Chem Bull, Int Ed. 2010;59(4):699–705.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Ariadni Zianna
    • 1
  • Maja Šumar Ristović
    • 2
  • Antonis Hatzidimitriou
    • 1
  • Christos D. Papadopoulos
    • 1
  • Maria Lalia-Kantouri
    • 1
  1. 1.Laboratory of Inorganic Chemistry, Department of ChemistryAristotle University of ThessalonikiThessaloníkiGreece
  2. 2.Faculty of ChemistryUniversity of BelgradeBelgradeSerbia

Personalised recommendations