Skip to main content
Log in

The investigation of methyl phenyl silicone resin/epoxy resin using epoxy-polysiloxane as compatibilizer

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A novel polysiloxane (HPS) with epoxy and phenyl groups was synthesized by controlled hydrolysis and condensation of γ-(2,3-epoxypropoxy)propytrimethoxysilane (KH560) and diphenyl silanediol. Besides, HPS was used as the compatibilizer of the miscible diglycidyl ether of bisphenol A (DGEBA)/methyl phenyl silicone resin (Si603) blend. The structure and effect of HPS were characterized by Fourier transform infrared spectra, nuclear magnetic resonance (1H-NMR), differential scanning calorimetry, and scanning electron microscopy (SEM). The results showed that HPS could significantly improve the compatibility between epoxy resin (EP) and Si603 resin. In addition, the glass transition temperature (T g) of the blend increases with increasing amount of Si603 from 129 to 151 °C. The thermal stability of blending system was studied by thermogravimetric analysis, derivative thermogravimetric analysis and SEM. The results showed that the incorporation of Si603 into DGEBA resin not only obviously increased the thermal resistance, but also remarkably improved the flame retardancy. The high limiting oxygen index of the HPS/EP/Si603/DDM system at 31 is considered as excellent flame retardancy in the epoxy system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fu SY, Zheng B. Templated silica tubes with high aspect ratios as effective fillers for enhancing the overall performance of polyimide films. Chem Mater. 2008;20:1090–8.

    Article  CAS  Google Scholar 

  2. Wang DM, Zhang JH, Lin Q, Fu LS, Zhang HJ, Yang B. Lanthanide complex/polymer composite optical resin with intense narrow band emission, high transparency and good mechanical performance. J Mater Chem. 2003;13:2279.

    Article  CAS  Google Scholar 

  3. Tang HY, Li WW, Fan XH, Chen XF, Shen ZH, Zhou QF. Synthesis, preparation and properties of novel high-performance allyl–maleimide resins. Polymer. 2009;50:1414.

    Article  CAS  Google Scholar 

  4. Gojny FH, Wichmann MHG, Fiedler B, Kinloch IA, Bauhofer W, Windle AH, Schulte K. Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer. 2006;47:2036–45.

    Article  CAS  Google Scholar 

  5. Wetzel B, Haupert F, Qiu Zhang M. Epoxy nanocomposites with high mechanical and tribological performance. Compos Sci Technol. 2003;63:2055–67.

    Article  CAS  Google Scholar 

  6. Rosu D, Cascaval CN, Mustata F, Ciobanu C. Cure kinetics of epoxy resins studied by non-isothermal DSC data. Thermochim Acta. 2002;383:119–27.

    Article  CAS  Google Scholar 

  7. Smith SD, Long TE, McGrath JE. Thermogravimetric analysis of poly(alkyl methacrylates) and poly(methylmethacrylate-g-dimethyl siloxane) graft copolymers. J Polym Sci Part A. 1994;32:1747–53.

    Article  CAS  Google Scholar 

  8. Kambour RP, Klipfer HJ, Smith SA. Limiting oxygen indices of silicone block polymers. J Appl Polym Sci. 1981;26:847.

    Article  CAS  Google Scholar 

  9. Lin ST, Huang SK. Synthesis and characterization of siloxane-modified epoxy resin. J Polym Res. 1994;1:151.

    Article  CAS  Google Scholar 

  10. Amerio E, Sangermano M, Malucelli G, Priola A, Rizza G. Preparation and characterization of hyperbranched polymer/silica hybrid nanocoatings by dual-curing process. Macromol Mater Eng. 2006;91:1287–92.

    Article  Google Scholar 

  11. Mahapatra S, Singha KN. Hyperbranched polyamine/cu nanoparticles for epoxy thermoset. J Mater Sci Part A. 2009;46:296–303.

    CAS  Google Scholar 

  12. Jin FL, Park SJ. Thermal properties and toughness performance of hyperbranched-polyimide-Modified epoxy resins. J Polym Sci, Part B. 2006;44:3348–56.

    Article  CAS  Google Scholar 

  13. Xu J, Wu H, Mills OP, Heiden PA. A morphological investigation of thermosets toughened with novel thermoplastics. I. Bismaleimide modified with hyperbranched polyester. J Appl Polym Sci. 1999;72:1065–76.

    Article  CAS  Google Scholar 

  14. Zhang GB, Fan XD, Liu YY, Kong J, Wang SJ. Structure design of novel hyperbranched polycarbosilazanes: synthesis and characterization. J Polym. 2007;7:644–6.

    Google Scholar 

  15. Torry SA, Campbell A, Cunliffe AV, Tod DA. Kinetic analysis of organosilane hydrolysis and condensation. Int J Adhes Adhes. 2006;26:40–9.

    Article  CAS  Google Scholar 

  16. Couchman P. Compositional variation of glass-transition temperatures. 2. Application of the thermodynamic theory to compatible polymer blends. Macromolecules. 1978;11:1156–61.

    Article  CAS  Google Scholar 

  17. Wang WJ, Perng LH, Hsiue GH, Chang FC. Characterization and properties of new silicone-containing epoxy resin. Polymer. 2000;41:6113–22.

    Article  CAS  Google Scholar 

  18. Sun Bin, Liang Guozheng, Aijuan Gu, Yuan Li. High performance miscible polyetherimide/bismaleimide resins with simultaneously improved integrated properties based on a novel hyperbranched polysiloxane having a high degree of branching. Ind Eng Chem Res. 2013;52:5054–65.

    Article  CAS  Google Scholar 

  19. Gu AJ. Thermal degradation behaviour and kinetic analysis of Epoxy/montmorillonite nanocomposites. Polym Degrad Stab. 2003;80:383–91.

    Article  CAS  Google Scholar 

  20. Kanai H, Sullivan V, Auerback A. Impact modification of engineering thermoplastics. J Appl Polym Sci. 1994;53:527.

    Article  CAS  Google Scholar 

  21. Kambour RP. Flammability resistance synergism in BPA polycarbonate–silicone block polymers. J Appl Polym Sci. 1981;26:861.

    Article  CAS  Google Scholar 

  22. Kambour RP, Ligon WV, Russell RP. Enhancement of the limiting oxygen index of an aromatic polycarbonate by the incorporation of silicone blocks. J Polym Sci, Part C. 1978;16:327.

    CAS  Google Scholar 

  23. Curry JE, Byrd JD. Silane polymers of diols. J Appl Polym Sci. 1965;9:295.

    Article  CAS  Google Scholar 

  24. Wang X, Hu Y, Song L, Xing W, Lu H, Lv P, Jie G. Flame retardancy and thermal degradation mechanism of epoxy resin composites based on a DOPO substituted organophosphorus oligomer. Polymer. 2010;51:2435–45.

    Article  CAS  Google Scholar 

  25. Dunnavant WR, Markle RA, Curry JE, Byrd JD. Synthesis of polyaryloxysilanes by melt-polymerizing dianilino-and diphenoxysilanes with aromatic diols. J Polym Sci Polym Chem Ed. 1967;5:707.

    Article  CAS  Google Scholar 

  26. Liaw DJ, Liaw BY. Synthesis and characterization of novel polyaryloxydiphenylsilane derived from 2, 2-dimethyl-biphenyl-4,4-diol. J Polym Sci Part A. 1999;37:4591.

    Article  CAS  Google Scholar 

  27. Wu CS, Liu YL, Chiu YS. Epoxy resins possessing flame retardant elements from silicon incorporated epoxy compounds curing with phosphorus or nitrogen containing curing agents. Polymer. 2002;43:4277–84.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the generous financial support by the following grant: National Natural Sciences Foundation of China, Grant no. 50973066.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xufu Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Bao, X., Deng, S. et al. The investigation of methyl phenyl silicone resin/epoxy resin using epoxy-polysiloxane as compatibilizer. J Therm Anal Calorim 118, 247–254 (2014). https://doi.org/10.1007/s10973-014-4017-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4017-7

Keywords

Navigation