Journal of Thermal Analysis and Calorimetry

, Volume 118, Issue 1, pp 461–473 | Cite as

Calorimetry and thermal analysis studies on the binding of 13-phenylalkyl and 13-diphenylalkyl berberine analogs to tRNAphe

  • Debipreeta Bhowmik
  • Franco Buzzetti
  • Gaetano Fiorillo
  • Laura Franchini
  • Tanjia Monir Syeda
  • Paolo Lombardi
  • Gopinatha Suresh Kumar


The interaction of 13- monophenylalkyl and diphenylalkyl berberine analogs with tRNAphe has been investigated using various thermochemical techniques like thermal melting, isothermal titration calorimetry, and differential scanning calorimetry experiments. Thermal melting studies revealed that all the analogs stabilized the tRNAphe better than berberine. The binding affinity for the analogs was of the order of 105 M−1. Calorimetry results suggested that the binding of these analogs was predominantly entropy driven with small negative enthalpy contribution to the standard molar Gibbs energy. The temperature dependence of the standard molar enthalpy changes yielded negative values of standard molar heat capacity changes for the complexation revealing substantial hydrophobic contribution in the RNA binding of these analogs. An enthalpy–entropy compensation behavior was also seen in all the systems. The diphenylalkyl analogs were found to be more effective tRNAphe binders compared to the monophenylalkyl analogs. The utility of the present work lies in understanding the structural and energetic aspects of the interaction of these berberine analogs with tRNA, which may be useful in the development of RNA-targeted drugs.


13-substituted berberine analogs tRNAphe Binding Interaction Calorimetry Thermodynamics 



This work was supported by grants from the Council of Scientific and Industrial Research (CSIR) network project GenCODE (BSC0123). D. Bhowmik is a NET-Senior Research Fellow of the University Grants Commission, Government of India. The authors thank all the colleagues of the Biophysical Chemistry Laboratory for help and cooperation at every stage of this work. Naxopharma srl, Italy acknowledges financial supports by the Italian Ministry of Economic Development, Grant No. 01705, awarded within sixth call of the EuroTransBio initiative, and by Regione Lombardia, Italy, Grant No. 13810040, awarded within Bando ATP2009.


  1. 1.
    Johnstone O, Lasko P. Translational regulation and RNA localization in Drosophila oocytes and embryos. Annu Rev Genet. 2001;35:365–406.CrossRefGoogle Scholar
  2. 2.
    Bayne EH, Allshire RC. RNA-directed transcriptional gene silencing in mammals. Trends Genet. 2005;21:370–3.CrossRefGoogle Scholar
  3. 3.
    Fedor MJ, Williamson JR. The catalytic diversity of RNAs. Nat Rev Mol Cell Biol. 2005;6:399–412.CrossRefGoogle Scholar
  4. 4.
    Yoo SM, Na D, Lee SY. Design and use of synthetic regulatory small RNAs to control gene expression in Escherichia coli. Nat Protoc. 2013;8:1694–707.CrossRefGoogle Scholar
  5. 5.
    Ichinohe T, Watanabe I, Ito S, Fujii H, Moriyama M, Tamura S, et al. Synthetic double-stranded RNA poly(I:C) combined with mucosal vaccine protects against influenza virus infection. J Virol. 2005;79:2910–9.CrossRefGoogle Scholar
  6. 6.
    Charpentier C, Nora T, Tenaillon O, Clavel F, Hance AJ. Extensive recombination among human immunodeficiency virus type 1 quasispecies makes an important contribution to viral diversity in individual patients. J Virol. 2006;80:2472–82.CrossRefGoogle Scholar
  7. 7.
    Thomas JR, Hergenrother PJ. Targeting RNA with small molecules. Chem Rev. 2008;108:1171–224.CrossRefGoogle Scholar
  8. 8.
    Thomas JR, Liu X, Hergenrother PJ. Size-specific ligands for RNA hairpin loops. J Am Chem Soc. 2005;127:12434–5.CrossRefGoogle Scholar
  9. 9.
    Galloe AM, Graudal N, Christensen HR, Kampmann JP. Aminoglycosides: single or multiple daily dosing? A meta-analysis on efficacy and safety. Eur J Clin Pharmacol. 1995;48(1):39–43.CrossRefGoogle Scholar
  10. 10.
    Edson RS, Terrell CL. The aminoglycosides. Mayo Clin Proc. 1999;74:519–28.CrossRefGoogle Scholar
  11. 11.
    Yokogawa T, Watanabe Y, Kumazawa Y, Ueda T, Hirao I, Miura K, et al. A novel cloverleaf structure found in mammalian mitochondrial tRNASer (UCN). Nucleic Acids Res. 1991;19:6101–5.CrossRefGoogle Scholar
  12. 12.
    Byrne RT, Konevega AL, Rodnina MV, Antson AA. The crystal structure of unmodified tRNAPhe from Escherichia coli. Nucleic Acids Res. 2010;38(12):4154–62.CrossRefGoogle Scholar
  13. 13.
    Wongbutdee J. Physiological effects of berberine. Review. Thai Pharmaceut Health Sci J. 2009;4:478–83.Google Scholar
  14. 14.
    Barbosa-Filho JM, Piuvezam MR, Moura MD, Silva MS, Lima KVB, Cunha EVL, Fechine IM, Takemura OS. Antimicrobial, cytotoxicity and phytochemical screening of Jordanian plants used in traditional medicine. Rev Bras Farmacogn. 2006;16:109–39.CrossRefGoogle Scholar
  15. 15.
    Tran QL, Tezuka Y, Ueda JY, Nguyen NT, Maruyama Y, Begum K, et al. In vitro antiplasmodial activity of antimalarial medicinal plants used in Vietnamese traditional medicine. J Ethnopharmacol. 2003;86:249–52.CrossRefGoogle Scholar
  16. 16.
    Sun Y, Xun K, Wang Y, Chen X. A systematic review of the anticancer properties of berberine, a natural product from Chinese herbs. Anticancer Drugs. 2009;20:757–69.CrossRefGoogle Scholar
  17. 17.
    Yan D, Jin C, Xiao XH, Dong XP. Antimicrobial properties of berberines alkaloids in Coptis chinensis Franch by microcalorimetry. J Biochem Biophys Methods. 2008;70:845–9.CrossRefGoogle Scholar
  18. 18.
    Liu SZ, Deng YX, Chen B, Zhang XJ, Shi QZ, Qiu XM. Antihyperglycemic effect of the traditional Chinese scutellaria-coptis herb couple and its main components in streptozotocin-induced diabetic rats. J Ethnopharmacol. 2013;145:490–8.CrossRefGoogle Scholar
  19. 19.
    Tillhon M, Guaman Ortiz LM, Lombardi P, Scovassi AI. Berberine: new perspectives for old remedies. Biochem Pharmacol. 2012;84(10):1260-7.Google Scholar
  20. 20.
    Mittal A, Tabasum S, Singh RP. Berberine in combination with doxorubicin suppresses growth of murine melanoma B16F10 cells in culture and xenograft. Phytomedicine. 2014;21:340–7.CrossRefGoogle Scholar
  21. 21.
    Bhadra K, Maiti M, Suresh Kumar G. Berberine–DNA complexation: new insights into the cooperative binding and energetic aspects. Biochim Biophys Acta. 2008;1780:1054–61.CrossRefGoogle Scholar
  22. 22.
    Islam MM, Chowdhury SR, Suresh Kumar G. Spectroscopic and calorimetric studies on the binding of alkaloids berberine, palmatine and coralyne to double stranded RNA polynucleotides. J Phys Chem B. 2009;113:1210–24.CrossRefGoogle Scholar
  23. 23.
    Krishnan P, Bastow KF. The 9-position in berberine analogs is an important determinant of DNA topoisomerase II inhibition. Anticancer Drug Des. 2000;15:255–64.Google Scholar
  24. 24.
    Albring KF, Weidemuller J, Mittag S, Weiske J, Friedrich K, Geroni MC, et al. Berberine acts as a natural inhibitor of Wnt/beta-catenin signaling-Identification of more active 13-arylalkyl derivatives. BioFactors. 2013;39:652–62.CrossRefGoogle Scholar
  25. 25.
    Islam MM, Basu A, Hossain M, Sureshkumar G, Hotha S, Suresh Kumar G. Enhanced DNA binding of 9-omega-amino alkyl ether analogs from the plant alkaloid berberine. DNA Cell Biol. 2011;30:123–33.CrossRefGoogle Scholar
  26. 26.
    Basu A, Jaisankar P, Suresh Kumar G. Synthesis of novel 9-O-N-aryl/aryl-alkyl amino carbonyl methyl substituted berberine analogs and evaluation of DNA binding aspects. Bioorg Med Chem. 2012;20:2498–505.CrossRefGoogle Scholar
  27. 27.
    Bhowmik D, Hossain M, Buzzetti F, D’Auria R, Lombardi P, Suresh Kumar G. Biophysical studies on the effect of the 13 position substitution of the anticancer alkaloid berberine on its DNA binding. J Phys Chem B. 2012;116:2314–24.CrossRefGoogle Scholar
  28. 28.
    Bhowmik D, Buzzetti F, Fiorillo G, Orzi F, Syeda TM, Lombardi P, et al. Synthesis of new 13-diphenylalkyl analogues of berberine and elucidation of their base pair specificity and energetics of DNA binding. Med Chem Commun. 2014;5(2):226–31.CrossRefGoogle Scholar
  29. 29.
    Lo CY, Hsu LC, Chen MS, Lin YJ, Chen LG, Kuo CD, et al. Synthesis and anticancer activity of a novel series of 9-O-substituted berberine derivatives: a lipophilic substitute role. Bioorg Med Chem Lett. 2013;23:305–9.CrossRefGoogle Scholar
  30. 30.
    Iwasa K, Moriyasu M, Yamori T, Turuo T, Lee DU, Wiegrebe W. In vitro cytotoxicity of the protoberberine-type alkaloids. J Nat Prod. 2001;64:896–8.CrossRefGoogle Scholar
  31. 31.
    Pierpaoli E, Arcamone AG, Buzzetti F, Lombardi P, Salvatore C, Provinciali M. Antitumor effect of novel berberine derivatives in breast cancer cells. BioFactors. 2013;39:672–9.CrossRefGoogle Scholar
  32. 32.
    Lee DU, Kang YJ, Park MK, Lee YS, Seo HG, Kim TS, et al. Effects of 13-alkyl-substituted berberine alkaloids on the expression of COX-II, TNF-α, iNOS, and IL-12 production in LPS-stimulated macrophages. Life Sci. 2003;73:1401–12.CrossRefGoogle Scholar
  33. 33.
    Samosorn S, Tanwirat B, Muhamad N, Casadei G, Tomkiewicz D, Lewis K, et al. Antibacterial activity of berberine-NorA pump inhibitor hybrids with a methylene ether linking group. Bioorg Med Chem. 2009;17:3866–72.CrossRefGoogle Scholar
  34. 34.
    Das A, Bhadra K, Suresh Kumar G. Targeting RNA by small molecules: comparative structural and thermodynamic aspects of aristololactam-β-d-glucoside and daunomycin binding to tRNAphe. PLoS One. 2011;6:e23186.CrossRefGoogle Scholar
  35. 35.
    Paul P, Suresh Kumar G. Targeting ribonucleic acids by toxic small molecules: structural perturbation and energetics of interaction of phenothiazinium dyes thionine and toluidine blue O to tRNAphe. J Hazard Mater. 2013;263:735–45.CrossRefGoogle Scholar
  36. 36.
    US Pat. 8,188,109B2 to Naxospharma srl, published issued May 29, 2012.Google Scholar
  37. 37.
    Chaires JB. Calorimetry and thermodynamics in drug design. Annu Rev Biophys. 2008;37:135–51.CrossRefGoogle Scholar
  38. 38.
    Wszelaka-Rylik M, Gierycz P. Isothermal titration calorimetry (ITC) study of natural cyclodextrins inclusion complexes with drugs. J Therm Anal Calorim. 2013;111(3):2029–35.CrossRefGoogle Scholar
  39. 39.
    Wyrzykowski D, Pilarski B, Jacewicz D, Chmurzyński L. Investigation of metal–buffer interactions using isothermal titration calorimetry. J Therm Anal Calorim. 2013;111:1829–36.CrossRefGoogle Scholar
  40. 40.
    Islam MM, Pandya P, Kumar S, Suresh Kumar G. RNA targeting through binding of small molecules: studies on t-RNA binding by the cytotoxic protoberberine alkaloid coralyne. Mol BioSyst. 2009;5:244–54.CrossRefGoogle Scholar
  41. 41.
    Giri P, Suresh Kumar G. Self-structure induction in single stranded poly(A) by small molecules: studies on DNA intercalators, partial intercalators and groove binding molecules. Arch Biochem Biophys. 2008;474:183–92.CrossRefGoogle Scholar
  42. 42.
    Paul P, Hossain M, Suresh Kumar G. Calorimetric and thermal analysis studies on the binding of phenothiazinium dye thionine with DNA polynucleotides. J. Chem. Thermodyn. 2011;43:1036–43.CrossRefGoogle Scholar
  43. 43.
    Rani PG, Bachhawat K, Misquith S, Surolia A. Thermodynamic studies of saccharide binding to artocarpin, a B-cell mitogen, reveals the extended nature of its interaction with mannotriose [3,6-di-O-(α-d-mannopyranosyl)-d-mannose]. J Biol Chem. 1999;274:29694–8.CrossRefGoogle Scholar
  44. 44.
    Hossain M, Suresh Kumar G. DNA intercalation of methylene blue and quinacrine: new insights into base and sequence specificity from structural and thermodynamic studies with polynucleotides. Mol BioSyst. 2009;5:1311–22.CrossRefGoogle Scholar
  45. 45.
    Bhowmik D, Das S, Hossain M, Haq L, Suresh Kumar G. Biophysical characterization of the strong stabilization of the RNA triplex poly(U).poly(A)*poly(U) by 9-O-(ω-amino) alkyl ether berberine analogs. PLoS One. 2012;7:e37939.CrossRefGoogle Scholar
  46. 46.
    Gatta GD, Richardson MJ, Sarge SM, Stølen S. Calibration and guidelines in microcalorimetry. Part 2. Calibration standards for differential scanning calorimetry (IUPAC technical report). Pure Appl Chem. 2006;78:1455–76.Google Scholar
  47. 47.
    Record MT Jr, Lohman ML, De Haseth P. Ion effects on ligand-nucleic acid interactions. J Mol Biol. 1976;107:145–58.CrossRefGoogle Scholar
  48. 48.
    Record MT Jr, Anderson CF, Lohman TM. Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids: the roles of ion association or release, screening, and ion effects on water activity. Q Rev Biophys. 1978;11:103–78.CrossRefGoogle Scholar
  49. 49.
    Paul P, Suresh Kumar G. Thermodynamics of the DNA binding of phenothiazinium dyes toluidine blue O, azure A and azure B. J Chem Thermodyn. 2013;64:50–7.CrossRefGoogle Scholar
  50. 50.
    Das A, Suresh Kumar G. Drug–DNA binding thermodynamics: a comparative study of aristololactam-β-d-glucoside and daunomycin. J Chem Thermodyn. 2012;54:421–8.CrossRefGoogle Scholar
  51. 51.
    Chaires JB, Satyanarayana S, Suh D, Fokt I, Przewloka T, Priebe W. Parsing the free energy of anthracycline antibiotic binding to DNA. Biochemistry. 1996;35:2047–53.CrossRefGoogle Scholar
  52. 52.
    Loladze VV, Ermolenko DN, Makhatadze GI. Heat capacity changes upon burial of polar and nonpolar groups in proteins. Protein Sci. 2001;10:1343–52.CrossRefGoogle Scholar
  53. 53.
    Sayed Y, Hornby JA, Lopez M, Dirr H. Thermodynamics of the ligandin function of human class Alpha glutathione transferase A1-1: energetics of organic anion ligand binding. Biochem J. 2002;363:341–6.CrossRefGoogle Scholar
  54. 54.
    Saha I, Suresh Kumar G. Phenazinium dyes methylene violet 3RAX and indoine blue bind to DNA by intercalation: evidence from structural and thermodynamic studies. Dyes Pigments. 2013;96:81–91.CrossRefGoogle Scholar
  55. 55.
    Nguyen B, Stanek J, Wilson WD. Binding-linked protonation of a DNA minor-groove agent. Biophys J. 2006;90:1319–28.CrossRefGoogle Scholar
  56. 56.
    Buchmueller KL, Bailey SL, Matthews DA, Taherbhai ZT, Register JK, Davis ZS, et al. Physical and structural basis for the strong interactions of the -ImPy- central pairing motif in the polyamide f-ImPyIm. Biochemistry. 2006;45:13551–65.CrossRefGoogle Scholar
  57. 57.
    Haq I. Thermodynamics of drug-DNA interactions. Arch Biochem Biophys. 2002;403:1–15.CrossRefGoogle Scholar
  58. 58.
    Murphy FV, Churchill ME. Nonsequence-specific DNA recognition: a structural perspective. Structure. 2000;8:R83–9.CrossRefGoogle Scholar
  59. 59.
    Ha JH, Spolar RS, Record MT Jr. Role of the hydrophobic effect in stability of site-specific protein–DNA complexes. J Mol Biol. 1989;209:801–16.CrossRefGoogle Scholar
  60. 60.
    Jen-Jacobson L, Engler LE, Jacobson LA. Structural and thermodynamic strategies for site-specific DNA binding proteins. Structure. 2000;8:1015–23.CrossRefGoogle Scholar
  61. 61.
    Guthrie KM, Parenty AD, Smith LV, Cronin L, Cooper A. Microcalorimetry of interaction of dihydro-imidazo-phenanthridinium (DIP)-based compounds with duplex DNA. Biophys Chem. 2007;126:117–23.CrossRefGoogle Scholar
  62. 62.
    Cooper A, Johnson CM, Lakey JH, Nollmann M. Heat does not come in different colours: entropy–enthalpy compensation, free energy windows, quantum confinement, pressure perturbation calorimetry, solvation and the multiple causes of heat capacity effects in biomolecular interactions. Biophys Chem. 2001;93:215–30.CrossRefGoogle Scholar
  63. 63.
    Chaires JB. A thermodynamic signature for drug-DNA binding mode. Arch Biochem Biophys. 2006;453:26–31.CrossRefGoogle Scholar
  64. 64.
    Lee B. Enthalpy-entropy compensation in the thermodynamics of hydrophobicity. Biophys Chem. 1994;51:271–7.CrossRefGoogle Scholar
  65. 65.
    Privalov PL, Khechinashvili NN. A thermodynamic approach to the problem of stabilization of globular protein structure: a calorimetric study. J Mol Biol. 1974;86:665–84.CrossRefGoogle Scholar
  66. 66.
    Arntfield SD, Murray ED. The influence of processing parameters on food protein functionality I. Differential scanning calorimetry as an indicator of protein denaturation. Canadian Inst Food Sci Technol. 1981;14:289–94.CrossRefGoogle Scholar
  67. 67.
    Bruylants G, Wouters J, Michaux C. Differential scanning calorimetry in life science: thermodynamics, stability, molecular recognition and application in drug design. Curr Med Chem. 2005;12:2011–20.CrossRefGoogle Scholar
  68. 68.
    Petraccone L, Baiano S, Fiorentino G, Barone G, Giancola C. Simultaneous effect of cadaverine and osmolytes on ct-DNA thermal stability. Thermochim Acta. 2004;418:47–52.CrossRefGoogle Scholar
  69. 69.
    Islam MM, Pandya P. Roy Chowdhury S, Kumar S, Suresh Kumar G. Binding of DNA-binding alkaloids berberine and palmatine to tRNA and comparison to ethidium: spectroscopic and molecular modeling studies. J Mol Struct. 2008;891:498–507.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Debipreeta Bhowmik
    • 1
  • Franco Buzzetti
    • 2
  • Gaetano Fiorillo
    • 2
  • Laura Franchini
    • 2
  • Tanjia Monir Syeda
    • 2
  • Paolo Lombardi
    • 2
  • Gopinatha Suresh Kumar
    • 1
  1. 1.Biophysical Chemistry Laboratory, Chemistry DivisionCSIR-Indian Institute of Chemical BiologyKolkataIndia
  2. 2.Naxospharma srlNovate MilaneseItaly

Personalised recommendations