Skip to main content
Log in

Calorimetry and thermal analysis studies on the binding of 13-phenylalkyl and 13-diphenylalkyl berberine analogs to tRNAphe

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The interaction of 13- monophenylalkyl and diphenylalkyl berberine analogs with tRNAphe has been investigated using various thermochemical techniques like thermal melting, isothermal titration calorimetry, and differential scanning calorimetry experiments. Thermal melting studies revealed that all the analogs stabilized the tRNAphe better than berberine. The binding affinity for the analogs was of the order of 105 M−1. Calorimetry results suggested that the binding of these analogs was predominantly entropy driven with small negative enthalpy contribution to the standard molar Gibbs energy. The temperature dependence of the standard molar enthalpy changes yielded negative values of standard molar heat capacity changes for the complexation revealing substantial hydrophobic contribution in the RNA binding of these analogs. An enthalpy–entropy compensation behavior was also seen in all the systems. The diphenylalkyl analogs were found to be more effective tRNAphe binders compared to the monophenylalkyl analogs. The utility of the present work lies in understanding the structural and energetic aspects of the interaction of these berberine analogs with tRNA, which may be useful in the development of RNA-targeted drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Johnstone O, Lasko P. Translational regulation and RNA localization in Drosophila oocytes and embryos. Annu Rev Genet. 2001;35:365–406.

    Article  CAS  Google Scholar 

  2. Bayne EH, Allshire RC. RNA-directed transcriptional gene silencing in mammals. Trends Genet. 2005;21:370–3.

    Article  CAS  Google Scholar 

  3. Fedor MJ, Williamson JR. The catalytic diversity of RNAs. Nat Rev Mol Cell Biol. 2005;6:399–412.

    Article  CAS  Google Scholar 

  4. Yoo SM, Na D, Lee SY. Design and use of synthetic regulatory small RNAs to control gene expression in Escherichia coli. Nat Protoc. 2013;8:1694–707.

    Article  CAS  Google Scholar 

  5. Ichinohe T, Watanabe I, Ito S, Fujii H, Moriyama M, Tamura S, et al. Synthetic double-stranded RNA poly(I:C) combined with mucosal vaccine protects against influenza virus infection. J Virol. 2005;79:2910–9.

    Article  CAS  Google Scholar 

  6. Charpentier C, Nora T, Tenaillon O, Clavel F, Hance AJ. Extensive recombination among human immunodeficiency virus type 1 quasispecies makes an important contribution to viral diversity in individual patients. J Virol. 2006;80:2472–82.

    Article  CAS  Google Scholar 

  7. Thomas JR, Hergenrother PJ. Targeting RNA with small molecules. Chem Rev. 2008;108:1171–224.

    Article  CAS  Google Scholar 

  8. Thomas JR, Liu X, Hergenrother PJ. Size-specific ligands for RNA hairpin loops. J Am Chem Soc. 2005;127:12434–5.

    Article  CAS  Google Scholar 

  9. Galloe AM, Graudal N, Christensen HR, Kampmann JP. Aminoglycosides: single or multiple daily dosing? A meta-analysis on efficacy and safety. Eur J Clin Pharmacol. 1995;48(1):39–43.

    Article  CAS  Google Scholar 

  10. Edson RS, Terrell CL. The aminoglycosides. Mayo Clin Proc. 1999;74:519–28.

    Article  CAS  Google Scholar 

  11. Yokogawa T, Watanabe Y, Kumazawa Y, Ueda T, Hirao I, Miura K, et al. A novel cloverleaf structure found in mammalian mitochondrial tRNASer (UCN). Nucleic Acids Res. 1991;19:6101–5.

    Article  CAS  Google Scholar 

  12. Byrne RT, Konevega AL, Rodnina MV, Antson AA. The crystal structure of unmodified tRNAPhe from Escherichia coli. Nucleic Acids Res. 2010;38(12):4154–62.

    Article  CAS  Google Scholar 

  13. Wongbutdee J. Physiological effects of berberine. Review. Thai Pharmaceut Health Sci J. 2009;4:478–83.

    Google Scholar 

  14. Barbosa-Filho JM, Piuvezam MR, Moura MD, Silva MS, Lima KVB, Cunha EVL, Fechine IM, Takemura OS. Antimicrobial, cytotoxicity and phytochemical screening of Jordanian plants used in traditional medicine. Rev Bras Farmacogn. 2006;16:109–39.

    Article  CAS  Google Scholar 

  15. Tran QL, Tezuka Y, Ueda JY, Nguyen NT, Maruyama Y, Begum K, et al. In vitro antiplasmodial activity of antimalarial medicinal plants used in Vietnamese traditional medicine. J Ethnopharmacol. 2003;86:249–52.

    Article  Google Scholar 

  16. Sun Y, Xun K, Wang Y, Chen X. A systematic review of the anticancer properties of berberine, a natural product from Chinese herbs. Anticancer Drugs. 2009;20:757–69.

    Article  CAS  Google Scholar 

  17. Yan D, Jin C, Xiao XH, Dong XP. Antimicrobial properties of berberines alkaloids in Coptis chinensis Franch by microcalorimetry. J Biochem Biophys Methods. 2008;70:845–9.

    Article  Google Scholar 

  18. Liu SZ, Deng YX, Chen B, Zhang XJ, Shi QZ, Qiu XM. Antihyperglycemic effect of the traditional Chinese scutellaria-coptis herb couple and its main components in streptozotocin-induced diabetic rats. J Ethnopharmacol. 2013;145:490–8.

    Article  CAS  Google Scholar 

  19. Tillhon M, Guaman Ortiz LM, Lombardi P, Scovassi AI. Berberine: new perspectives for old remedies. Biochem Pharmacol. 2012;84(10):1260-7.

  20. Mittal A, Tabasum S, Singh RP. Berberine in combination with doxorubicin suppresses growth of murine melanoma B16F10 cells in culture and xenograft. Phytomedicine. 2014;21:340–7.

    Article  CAS  Google Scholar 

  21. Bhadra K, Maiti M, Suresh Kumar G. Berberine–DNA complexation: new insights into the cooperative binding and energetic aspects. Biochim Biophys Acta. 2008;1780:1054–61.

    Article  CAS  Google Scholar 

  22. Islam MM, Chowdhury SR, Suresh Kumar G. Spectroscopic and calorimetric studies on the binding of alkaloids berberine, palmatine and coralyne to double stranded RNA polynucleotides. J Phys Chem B. 2009;113:1210–24.

    Article  CAS  Google Scholar 

  23. Krishnan P, Bastow KF. The 9-position in berberine analogs is an important determinant of DNA topoisomerase II inhibition. Anticancer Drug Des. 2000;15:255–64.

    CAS  Google Scholar 

  24. Albring KF, Weidemuller J, Mittag S, Weiske J, Friedrich K, Geroni MC, et al. Berberine acts as a natural inhibitor of Wnt/beta-catenin signaling-Identification of more active 13-arylalkyl derivatives. BioFactors. 2013;39:652–62.

    Article  CAS  Google Scholar 

  25. Islam MM, Basu A, Hossain M, Sureshkumar G, Hotha S, Suresh Kumar G. Enhanced DNA binding of 9-omega-amino alkyl ether analogs from the plant alkaloid berberine. DNA Cell Biol. 2011;30:123–33.

    Article  CAS  Google Scholar 

  26. Basu A, Jaisankar P, Suresh Kumar G. Synthesis of novel 9-O-N-aryl/aryl-alkyl amino carbonyl methyl substituted berberine analogs and evaluation of DNA binding aspects. Bioorg Med Chem. 2012;20:2498–505.

    Article  CAS  Google Scholar 

  27. Bhowmik D, Hossain M, Buzzetti F, D’Auria R, Lombardi P, Suresh Kumar G. Biophysical studies on the effect of the 13 position substitution of the anticancer alkaloid berberine on its DNA binding. J Phys Chem B. 2012;116:2314–24.

    Article  CAS  Google Scholar 

  28. Bhowmik D, Buzzetti F, Fiorillo G, Orzi F, Syeda TM, Lombardi P, et al. Synthesis of new 13-diphenylalkyl analogues of berberine and elucidation of their base pair specificity and energetics of DNA binding. Med Chem Commun. 2014;5(2):226–31.

    Article  CAS  Google Scholar 

  29. Lo CY, Hsu LC, Chen MS, Lin YJ, Chen LG, Kuo CD, et al. Synthesis and anticancer activity of a novel series of 9-O-substituted berberine derivatives: a lipophilic substitute role. Bioorg Med Chem Lett. 2013;23:305–9.

    Article  CAS  Google Scholar 

  30. Iwasa K, Moriyasu M, Yamori T, Turuo T, Lee DU, Wiegrebe W. In vitro cytotoxicity of the protoberberine-type alkaloids. J Nat Prod. 2001;64:896–8.

    Article  CAS  Google Scholar 

  31. Pierpaoli E, Arcamone AG, Buzzetti F, Lombardi P, Salvatore C, Provinciali M. Antitumor effect of novel berberine derivatives in breast cancer cells. BioFactors. 2013;39:672–9.

    Article  CAS  Google Scholar 

  32. Lee DU, Kang YJ, Park MK, Lee YS, Seo HG, Kim TS, et al. Effects of 13-alkyl-substituted berberine alkaloids on the expression of COX-II, TNF-α, iNOS, and IL-12 production in LPS-stimulated macrophages. Life Sci. 2003;73:1401–12.

    Article  CAS  Google Scholar 

  33. Samosorn S, Tanwirat B, Muhamad N, Casadei G, Tomkiewicz D, Lewis K, et al. Antibacterial activity of berberine-NorA pump inhibitor hybrids with a methylene ether linking group. Bioorg Med Chem. 2009;17:3866–72.

    Article  CAS  Google Scholar 

  34. Das A, Bhadra K, Suresh Kumar G. Targeting RNA by small molecules: comparative structural and thermodynamic aspects of aristololactam-β-d-glucoside and daunomycin binding to tRNAphe. PLoS One. 2011;6:e23186.

    Article  CAS  Google Scholar 

  35. Paul P, Suresh Kumar G. Targeting ribonucleic acids by toxic small molecules: structural perturbation and energetics of interaction of phenothiazinium dyes thionine and toluidine blue O to tRNAphe. J Hazard Mater. 2013;263:735–45.

    Article  CAS  Google Scholar 

  36. US Pat. 8,188,109B2 to Naxospharma srl, published issued May 29, 2012.

  37. Chaires JB. Calorimetry and thermodynamics in drug design. Annu Rev Biophys. 2008;37:135–51.

    Article  CAS  Google Scholar 

  38. Wszelaka-Rylik M, Gierycz P. Isothermal titration calorimetry (ITC) study of natural cyclodextrins inclusion complexes with drugs. J Therm Anal Calorim. 2013;111(3):2029–35.

    Article  CAS  Google Scholar 

  39. Wyrzykowski D, Pilarski B, Jacewicz D, Chmurzyński L. Investigation of metal–buffer interactions using isothermal titration calorimetry. J Therm Anal Calorim. 2013;111:1829–36.

    Article  CAS  Google Scholar 

  40. Islam MM, Pandya P, Kumar S, Suresh Kumar G. RNA targeting through binding of small molecules: studies on t-RNA binding by the cytotoxic protoberberine alkaloid coralyne. Mol BioSyst. 2009;5:244–54.

    Article  CAS  Google Scholar 

  41. Giri P, Suresh Kumar G. Self-structure induction in single stranded poly(A) by small molecules: studies on DNA intercalators, partial intercalators and groove binding molecules. Arch Biochem Biophys. 2008;474:183–92.

    Article  CAS  Google Scholar 

  42. Paul P, Hossain M, Suresh Kumar G. Calorimetric and thermal analysis studies on the binding of phenothiazinium dye thionine with DNA polynucleotides. J. Chem. Thermodyn. 2011;43:1036–43.

    Article  CAS  Google Scholar 

  43. Rani PG, Bachhawat K, Misquith S, Surolia A. Thermodynamic studies of saccharide binding to artocarpin, a B-cell mitogen, reveals the extended nature of its interaction with mannotriose [3,6-di-O-(α-d-mannopyranosyl)-d-mannose]. J Biol Chem. 1999;274:29694–8.

    Article  CAS  Google Scholar 

  44. Hossain M, Suresh Kumar G. DNA intercalation of methylene blue and quinacrine: new insights into base and sequence specificity from structural and thermodynamic studies with polynucleotides. Mol BioSyst. 2009;5:1311–22.

    Article  CAS  Google Scholar 

  45. Bhowmik D, Das S, Hossain M, Haq L, Suresh Kumar G. Biophysical characterization of the strong stabilization of the RNA triplex poly(U).poly(A)*poly(U) by 9-O-(ω-amino) alkyl ether berberine analogs. PLoS One. 2012;7:e37939.

    Article  CAS  Google Scholar 

  46. Gatta GD, Richardson MJ, Sarge SM, Stølen S. Calibration and guidelines in microcalorimetry. Part 2. Calibration standards for differential scanning calorimetry (IUPAC technical report). Pure Appl Chem. 2006;78:1455–76.

    Google Scholar 

  47. Record MT Jr, Lohman ML, De Haseth P. Ion effects on ligand-nucleic acid interactions. J Mol Biol. 1976;107:145–58.

    Article  CAS  Google Scholar 

  48. Record MT Jr, Anderson CF, Lohman TM. Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids: the roles of ion association or release, screening, and ion effects on water activity. Q Rev Biophys. 1978;11:103–78.

    Article  CAS  Google Scholar 

  49. Paul P, Suresh Kumar G. Thermodynamics of the DNA binding of phenothiazinium dyes toluidine blue O, azure A and azure B. J Chem Thermodyn. 2013;64:50–7.

    Article  CAS  Google Scholar 

  50. Das A, Suresh Kumar G. Drug–DNA binding thermodynamics: a comparative study of aristololactam-β-d-glucoside and daunomycin. J Chem Thermodyn. 2012;54:421–8.

    Article  CAS  Google Scholar 

  51. Chaires JB, Satyanarayana S, Suh D, Fokt I, Przewloka T, Priebe W. Parsing the free energy of anthracycline antibiotic binding to DNA. Biochemistry. 1996;35:2047–53.

    Article  CAS  Google Scholar 

  52. Loladze VV, Ermolenko DN, Makhatadze GI. Heat capacity changes upon burial of polar and nonpolar groups in proteins. Protein Sci. 2001;10:1343–52.

    Article  CAS  Google Scholar 

  53. Sayed Y, Hornby JA, Lopez M, Dirr H. Thermodynamics of the ligandin function of human class Alpha glutathione transferase A1-1: energetics of organic anion ligand binding. Biochem J. 2002;363:341–6.

    Article  CAS  Google Scholar 

  54. Saha I, Suresh Kumar G. Phenazinium dyes methylene violet 3RAX and indoine blue bind to DNA by intercalation: evidence from structural and thermodynamic studies. Dyes Pigments. 2013;96:81–91.

    Article  CAS  Google Scholar 

  55. Nguyen B, Stanek J, Wilson WD. Binding-linked protonation of a DNA minor-groove agent. Biophys J. 2006;90:1319–28.

    Article  CAS  Google Scholar 

  56. Buchmueller KL, Bailey SL, Matthews DA, Taherbhai ZT, Register JK, Davis ZS, et al. Physical and structural basis for the strong interactions of the -ImPy- central pairing motif in the polyamide f-ImPyIm. Biochemistry. 2006;45:13551–65.

    Article  CAS  Google Scholar 

  57. Haq I. Thermodynamics of drug-DNA interactions. Arch Biochem Biophys. 2002;403:1–15.

    Article  CAS  Google Scholar 

  58. Murphy FV, Churchill ME. Nonsequence-specific DNA recognition: a structural perspective. Structure. 2000;8:R83–9.

    Article  CAS  Google Scholar 

  59. Ha JH, Spolar RS, Record MT Jr. Role of the hydrophobic effect in stability of site-specific protein–DNA complexes. J Mol Biol. 1989;209:801–16.

    Article  CAS  Google Scholar 

  60. Jen-Jacobson L, Engler LE, Jacobson LA. Structural and thermodynamic strategies for site-specific DNA binding proteins. Structure. 2000;8:1015–23.

    Article  CAS  Google Scholar 

  61. Guthrie KM, Parenty AD, Smith LV, Cronin L, Cooper A. Microcalorimetry of interaction of dihydro-imidazo-phenanthridinium (DIP)-based compounds with duplex DNA. Biophys Chem. 2007;126:117–23.

    Article  CAS  Google Scholar 

  62. Cooper A, Johnson CM, Lakey JH, Nollmann M. Heat does not come in different colours: entropy–enthalpy compensation, free energy windows, quantum confinement, pressure perturbation calorimetry, solvation and the multiple causes of heat capacity effects in biomolecular interactions. Biophys Chem. 2001;93:215–30.

    Article  CAS  Google Scholar 

  63. Chaires JB. A thermodynamic signature for drug-DNA binding mode. Arch Biochem Biophys. 2006;453:26–31.

    Article  CAS  Google Scholar 

  64. Lee B. Enthalpy-entropy compensation in the thermodynamics of hydrophobicity. Biophys Chem. 1994;51:271–7.

    Article  CAS  Google Scholar 

  65. Privalov PL, Khechinashvili NN. A thermodynamic approach to the problem of stabilization of globular protein structure: a calorimetric study. J Mol Biol. 1974;86:665–84.

    Article  CAS  Google Scholar 

  66. Arntfield SD, Murray ED. The influence of processing parameters on food protein functionality I. Differential scanning calorimetry as an indicator of protein denaturation. Canadian Inst Food Sci Technol. 1981;14:289–94.

    Article  Google Scholar 

  67. Bruylants G, Wouters J, Michaux C. Differential scanning calorimetry in life science: thermodynamics, stability, molecular recognition and application in drug design. Curr Med Chem. 2005;12:2011–20.

    Article  CAS  Google Scholar 

  68. Petraccone L, Baiano S, Fiorentino G, Barone G, Giancola C. Simultaneous effect of cadaverine and osmolytes on ct-DNA thermal stability. Thermochim Acta. 2004;418:47–52.

    Article  CAS  Google Scholar 

  69. Islam MM, Pandya P. Roy Chowdhury S, Kumar S, Suresh Kumar G. Binding of DNA-binding alkaloids berberine and palmatine to tRNA and comparison to ethidium: spectroscopic and molecular modeling studies. J Mol Struct. 2008;891:498–507.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Council of Scientific and Industrial Research (CSIR) network project GenCODE (BSC0123). D. Bhowmik is a NET-Senior Research Fellow of the University Grants Commission, Government of India. The authors thank all the colleagues of the Biophysical Chemistry Laboratory for help and cooperation at every stage of this work. Naxopharma srl, Italy acknowledges financial supports by the Italian Ministry of Economic Development, Grant No. 01705, awarded within sixth call of the EuroTransBio initiative, and by Regione Lombardia, Italy, Grant No. 13810040, awarded within Bando ATP2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopinatha Suresh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhowmik, D., Buzzetti, F., Fiorillo, G. et al. Calorimetry and thermal analysis studies on the binding of 13-phenylalkyl and 13-diphenylalkyl berberine analogs to tRNAphe . J Therm Anal Calorim 118, 461–473 (2014). https://doi.org/10.1007/s10973-014-3983-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3983-0

Keywords

Navigation