Journal of Thermal Analysis and Calorimetry

, Volume 118, Issue 1, pp 485–491 | Cite as

Modified stepwise method for determining heat capacity by DSC

  • Radim Pilař
  • Pavla Honcová
  • Petr Koštál
  • Galina Sádovská
  • Ladislav Svoboda


The methods of heat capacity data determination from differential scanning calorimetry measurements are described. The negative effects increasing uncertainty of heat capacity determination are mentioned. Modified stepwise method was described and verified using molybdenum, copper, and gold standards. Modified stepwise method provides better accuracy of C p values compared to continuous and stepwise method.


DSC Heat capacity Stepwise method Continuous method Accuracy of Cp 



This work has been supported by the Czech Science Foundation under project No. P106/11/1152.


  1. 1.
    Perkin-Elmer instruments Pyris 1: technical Norwalk, CT:specifications; 2000.Google Scholar
  2. 2.
    Höhne GWH, Hemminger WF, Flammersheim H-J. Differential scanning calorimetry. 2nd ed. Berlin: Springer Verlag; 2003.CrossRefGoogle Scholar
  3. 3.
    Zielenkiewicz W. Calorimetry. 1st ed. Warszava: Institute of Physical Chemistry PAN; 2005.Google Scholar
  4. 4.
    Web of Science. Accessed 1 Mar 2014.
  5. 5.
    Fabrichnaya O, Kriegel MJ, Pavlyuchkov D, Seidel J, Dzuban A, Savinykh G, Schreiber G. Heat capacity for the Eu2Zr2O7 and the phase relation in the ZrO2-Eu2O3 system. Experimental studies and calculations. Thermochim Acta. 2013;558:74–82.CrossRefGoogle Scholar
  6. 6.
    Jankovsky O, Sedmidubský D, Sofer Z, Čapek J, Růžička K. Thermal properties and homogeneity range of Bi24+xCo2-xO39 ceramics. Ceram-Silik. 2013;57:83–6.Google Scholar
  7. 7.
    Thomas D, Abdel-Hafiez M, Gruber T, Huttl R, Seidel J, Wolter A, Buchner B, Kortus J, Mertens F. The heat capacity and entropy of lithium silicides over the themperature range from (2 to 873)K. J Chem Thermodyn. 2013;64:205–25.CrossRefGoogle Scholar
  8. 8.
    Brown ME, Gallagher PK (eds). Handbook of thermal analysis and calorimetry. Volume 1: Principle and Practise, Amsterdam: Elsevier, 1998.Google Scholar
  9. 9.
    Pilar R, Svoboda L, Honcova P, Oravova L. Study of magnesium chloride hexahydrate as heat storage materiál. Thermochim Acta. 2012;546:81–6.CrossRefGoogle Scholar
  10. 10.
    Yan B, Li H, Zhao N, Ma H, Song J, Zhao F, Hu R. Thermodynamic properties and detonation characterization of 3,3-Dinitroazetidinium hydrochloride. J Chem Eng Data. 2013;58:3033–8.CrossRefGoogle Scholar
  11. 11.
    Banerjee A, Chaudhary ZS. Solid oxide electrochemical cell and differential scanning calorimetry used for thermodynamic measurements of the ternary oxides: Nd2RuO5(s) and Nd2Ru2O7(s). Mat Chem Phys. 2013;138:417–22.CrossRefGoogle Scholar
  12. 12.
    Navarro P, Larriba M, Rojo E, García J, Rodríguez F. Thermal properties of cyano-based ionic liquids. J Chem Eng Data. 2013;58:2187–93.CrossRefGoogle Scholar
  13. 13.
    Richardson MJ. Quantitative aspects of differential scanning calorimetry. Thermochim Acta. 1997;300:15–28.CrossRefGoogle Scholar
  14. 14.
    Sharma VK, Bhagour S, Sharma D, Solanki S. Thermodynamic properties of ternary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate with 1-methyl pyrrolidin-2-one or pyrrolidin-2-one + water. Thermochim Acta. 2013;563:72–81.CrossRefGoogle Scholar
  15. 15.
    Lv X-C, Tan Z-C, Gao X-H, Chen P. Molar heat capacity and thermodynamic properties of Lu(C5H9NO4)(C3H4N2)6(ClO4)3·5HClO4·10H2O. J Therm Anal Cal. 2013;111:971–6.CrossRefGoogle Scholar
  16. 16.
    Rudtsch S. Uncertainty of heat capacity measurements with differential scanning calorimeters. Thermochim Acta. 2002;382:17–25.CrossRefGoogle Scholar
  17. 17.
    Pak J, Qui W, Pyda M, Nowak-Pyda E, Wunderlich B. Can one measure precise heat capacity with DSC or TMDSC? J Therm Anal Cal. 2005;82:565–74.CrossRefGoogle Scholar
  18. 18.
    ASTM norm E1269-11: Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry, Pennsylvania, ASTM InternationalGoogle Scholar
  19. 19.
    Application note M149-v1, Setaram.Google Scholar
  20. 20.
    Mraw SC, Naas DF. Measurement of accurate heat-capacities by differential scanning calorimetry Comparison of d.s.c. results on pyrite (100 to 800 K) with literature values from precision adiabatic calorimetry. J. Chem Termodyn. 1979;11:567–84.CrossRefGoogle Scholar
  21. 21.
    NIST data of Mo–National Bureau of Standards Certificate, Standard Reference Material 781, Molybdenum–Heat capcity.Google Scholar
  22. 22.
    Sabbah R, Xu-wu A, Chickos JS, Planas Leitão ML, Roux MV, Torres LA. Reference materials for calorimetry and differential thermal analysis. Thermochim Acta. 1999;331:93–204.CrossRefGoogle Scholar
  23. 23.
    Knovel: Yaws′ handbook of properties of the chemical elements,
  24. 24.
    Slough CG, Hesse ND. High precision heat capacity measurements of metals by modulated DSC. Proc NATAS Annu Conf Therm Anal Appl. 2006;34:160.Google Scholar
  25. 25.
    Venkata Krishnan R, Nagarajan K. Evaluation of heat capacity measurements by temperature-modulated differential scanning calorimetry. J Therm Anal Cal. 2010;102:1135–40.CrossRefGoogle Scholar
  26. 26.
    Zanier A, Jaeckle HW. Heat capacity measurements of petroleum fuels by modulated DSC. Thermochim Acta. 1996;287:203–12.CrossRefGoogle Scholar
  27. 27.
    Blaine RL. Interlaboratory precision and bias for thermal conductivity and specific heat capacity by modulated differential scanning calorimetry. Therm Cond. 2005;26:309–18.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Radim Pilař
    • 1
  • Pavla Honcová
    • 1
  • Petr Koštál
    • 1
  • Galina Sádovská
    • 1
  • Ladislav Svoboda
    • 1
  1. 1.Department of Inorganic TechnologyUniversity of PardubicePardubiceCzech Republic

Personalised recommendations